Beweisarchiv: Mengenlehre: Mengenoperation: Differenzgesetz
- Charakteristikum unendlicher Mengen
- Injektivität Surjektivität Bijektivität: Faktoren · Komposition · Linksinverse · Linkskürzbarkeit · Rechtsinverse · Rechtskürzbarkeit
- Verkettungen: Assoziativgesetz der Hintereinanderausführung
- Mächtigkeiten (Kardinalzahlen): lineare Ordnung · Kardinalität und Bijektionen · Potenzmenge
- Deskriptive Mengenlehre: Satz von Young
- Rechenregeln für Mengenoperationen: Assoziativgesetze · Distributivgesetze · Differenzgesetze · Grundeigenschaften der Inklusion · De Morgansche Regeln für Mengen · Bild und Urbild
- Ordinalzahlen: Ordinalzahlen enthalten sich nicht selbst als Element · Elemente von Ordinalzahlen sind Ordinalzahlen · Durchschnitte von Ordinalzahlen sind Ordinalzahlen · Wohlordnung der Klasse aller Ordinalzahlen · Ordinalzahlen bilden eine echte Klasse · Der Nachfolger einer Ordinalzahl ist Ordinalzahl · Vereinigungen von Ordinalzahlen sind Ordinalzahlen · Limes- und Nachfolgerzahlen · Äquivalenz verschiedener Definitionen
- Sätze die in ZF Äquivalent zum Auswahlaxiom sind: Alternative Darstellung des Auswahlaxioms · Wohlordnungssatz · Lemma von Zorn
Durchschnitt mit Differenz
BearbeitenDieser Beweis kommt aus dem Bereich der Datenbanken und soll zeigen, dass jeder Durchschnitt (INTERSECT) auch mit dem Subtrahieren (MINUS) von Mengen abgebildet werden kann.
Voraussetzung
Bearbeitenseien beliebige Mengen.
Behauptung
Bearbeiten
Beweis
BearbeitenEs ist genau dann, wenn , also gilt weiter genau dann, wenn . Es ist zu zeigen, dass dies äquivalent zu ist. In der Tat gilt bereits im Rahmen der Aussagenlogik die Äquivalenz von und :
- Es gelte , insbesondere sowohl als auch . Somit ist falsch und sowie schließlich wahr.
- Es gelte , insbesondere und . Letzteres ist nach De Morgan äquivalent zu . Wegen folgt bzw (doppelte Negation). Insgesamt ergibt sich also .