Beweisarchiv: Mengenlehre: Mächtigkeiten (Kardinalzahlen): Potenzmenge
- Charakteristikum unendlicher Mengen
- Injektivität Surjektivität Bijektivität: Faktoren · Komposition · Linksinverse · Linkskürzbarkeit · Rechtsinverse · Rechtskürzbarkeit
- Verkettungen: Assoziativgesetz der Hintereinanderausführung
- Mächtigkeiten (Kardinalzahlen): lineare Ordnung · Kardinalität und Bijektionen · Potenzmenge
- Deskriptive Mengenlehre: Satz von Young
- Rechenregeln für Mengenoperationen: Assoziativgesetze · Distributivgesetze · Differenzgesetze · Grundeigenschaften der Inklusion · De Morgansche Regeln für Mengen · Bild und Urbild
- Ordinalzahlen: Ordinalzahlen enthalten sich nicht selbst als Element · Elemente von Ordinalzahlen sind Ordinalzahlen · Durchschnitte von Ordinalzahlen sind Ordinalzahlen · Wohlordnung der Klasse aller Ordinalzahlen · Ordinalzahlen bilden eine echte Klasse · Der Nachfolger einer Ordinalzahl ist Ordinalzahl · Vereinigungen von Ordinalzahlen sind Ordinalzahlen · Limes- und Nachfolgerzahlen · Äquivalenz verschiedener Definitionen
- Sätze die in ZF Äquivalent zum Auswahlaxiom sind: Alternative Darstellung des Auswahlaxioms · Wohlordnungssatz · Lemma von Zorn
Mächtigkeit der Potenzmenge
BearbeitenVoraussetzung
Bearbeitensei eine beliebige Menge.
Behauptung
Bearbeiten
Beweis
BearbeitenEs sind die folgenden beiden Aussagen zu zeigen:
- Es gibt eine Injektion
- Es gibt keine Bijektion zwischen und
Zu 1. Die Zuordnung leistet das Verlangte.
Zu 2. Angenommen, irgendeine Abbildung wäre surjektiv. Dies wird nun zum Widerspruch geführt, womit auch gezeigt ist, dass es keine Bijektion zwischen den beiden Mengen gibt.
Die Teilmenge von wird definiert als . Da als surjektiv angenommen wurde, hat ein Urbild unter , also ein Element mit . Nun gilt:
(Die erste Äquivalenz beinhaltet die Definition von , die zweite Äquivalenz benutzt nur die Urbildeigenschaft.)
Damit ist der gewünschte Widerspruch vorhanden.
Wikipedia-Verweise
BearbeitenInjektivität - Mächtigkeit - Potenzmenge - Surjektivität
- Charakteristikum unendlicher Mengen
- Injektivität Surjektivität Bijektivität: Faktoren · Komposition · Linksinverse · Linkskürzbarkeit · Rechtsinverse · Rechtskürzbarkeit
- Verkettungen: Assoziativgesetz der Hintereinanderausführung
- Mächtigkeiten (Kardinalzahlen): lineare Ordnung · Kardinalität und Bijektionen · Potenzmenge
- Deskriptive Mengenlehre: Satz von Young
- Rechenregeln für Mengenoperationen: Assoziativgesetze · Distributivgesetze · Differenzgesetze · Grundeigenschaften der Inklusion · De Morgansche Regeln für Mengen · Bild und Urbild
- Ordinalzahlen: Ordinalzahlen enthalten sich nicht selbst als Element · Elemente von Ordinalzahlen sind Ordinalzahlen · Durchschnitte von Ordinalzahlen sind Ordinalzahlen · Wohlordnung der Klasse aller Ordinalzahlen · Ordinalzahlen bilden eine echte Klasse · Der Nachfolger einer Ordinalzahl ist Ordinalzahl · Vereinigungen von Ordinalzahlen sind Ordinalzahlen · Limes- und Nachfolgerzahlen · Äquivalenz verschiedener Definitionen
- Sätze die in ZF Äquivalent zum Auswahlaxiom sind: Alternative Darstellung des Auswahlaxioms · Wohlordnungssatz · Lemma von Zorn