Beweisarchiv: Mengenlehre: Injektivität Surjektivität Bijektivität: Komposition

Beweisarchiv: Mengenlehre

Charakteristikum unendlicher Mengen
Injektivität Surjektivität Bijektivität: Faktoren · Komposition · Linksinverse · Linkskürzbarkeit · Rechtsinverse · Rechtskürzbarkeit
Verkettungen: Assoziativgesetz der Hintereinanderausführung
Mächtigkeiten (Kardinalzahlen): lineare Ordnung · Kardinalität und Bijektionen · Potenzmenge
Deskriptive Mengenlehre: Satz von Young
Rechenregeln für Mengenoperationen: Assoziativgesetze · Distributivgesetze · Differenzgesetze · Grundeigenschaften der Inklusion · De Morgansche Regeln für Mengen · Bild und Urbild
Ordinalzahlen: Ordinalzahlen enthalten sich nicht selbst als Element · Elemente von Ordinalzahlen sind Ordinalzahlen · Durchschnitte von Ordinalzahlen sind Ordinalzahlen · Wohlordnung der Klasse aller Ordinalzahlen · Ordinalzahlen bilden eine echte Klasse · Der Nachfolger einer Ordinalzahl ist Ordinalzahl · Vereinigungen von Ordinalzahlen sind Ordinalzahlen · Limes- und Nachfolgerzahlen · Äquivalenz verschiedener Definitionen
Sätze die in ZF Äquivalent zum Auswahlaxiom sind: Alternative Darstellung des Auswahlaxioms · Wohlordnungssatz · Lemma von Zorn


Komposition von injektiven, surjektiven oder bijektiven Abbildungen

Bearbeiten

Voraussetzung

Bearbeiten

  und   seien Abbildungen.

Behauptung

Bearbeiten
  1. Sind   und   injektiv, dann auch  .
  2. Sind   und   surjektiv, dann auch  .
  3. Sind   und   bijektiv, dann auch  .
  1. Seien   und   als injektiv vorausgesetzt und  . Weiter seien   mit  . Wir müssen   zeigen.
    Nach Definition von   gilt  . Da   injektiv ist, folgt  . Da   injektiv ist, folgt  .
  2. Seien   und   als surjektiv vorausgesetzt und  . Weiter sei ein Element   vorgegeben. Wir müssen ein   mit   finden.
    Da   surjektiv ist, gibt es ein Element   mit  . Da   surjektiv ist, gibt es ein Element   mit  . Zusammen haben wir   wie verlangt.
  3. Dies folgt aus 1 und 2, da ja bijektiv   injektiv   surjektiv.

Wikipedia-Verweise

Bearbeiten

Bijektivität - Injektivität - Komposition - Surjektivität


Beweisarchiv: Mengenlehre

Charakteristikum unendlicher Mengen
Injektivität Surjektivität Bijektivität: Faktoren · Komposition · Linksinverse · Linkskürzbarkeit · Rechtsinverse · Rechtskürzbarkeit
Verkettungen: Assoziativgesetz der Hintereinanderausführung
Mächtigkeiten (Kardinalzahlen): lineare Ordnung · Kardinalität und Bijektionen · Potenzmenge
Deskriptive Mengenlehre: Satz von Young
Rechenregeln für Mengenoperationen: Assoziativgesetze · Distributivgesetze · Differenzgesetze · Grundeigenschaften der Inklusion · De Morgansche Regeln für Mengen · Bild und Urbild
Ordinalzahlen: Ordinalzahlen enthalten sich nicht selbst als Element · Elemente von Ordinalzahlen sind Ordinalzahlen · Durchschnitte von Ordinalzahlen sind Ordinalzahlen · Wohlordnung der Klasse aller Ordinalzahlen · Ordinalzahlen bilden eine echte Klasse · Der Nachfolger einer Ordinalzahl ist Ordinalzahl · Vereinigungen von Ordinalzahlen sind Ordinalzahlen · Limes- und Nachfolgerzahlen · Äquivalenz verschiedener Definitionen
Sätze die in ZF Äquivalent zum Auswahlaxiom sind: Alternative Darstellung des Auswahlaxioms · Wohlordnungssatz · Lemma von Zorn