Beweisarchiv: Geometrie: Planimetrie: Kreis: Sehnensatz

Beweisarchiv: Geometrie

Schwerpunktsätze von Leibniz
Planimetrie
Kreis: Mittelpunktswinkel-Umfangswinkel · Satz des Ptolemäus · Sehnensatz · Sehnentangentenwinkel · Sehnenviereck · Sekantensatz · Japanischer Satz für konzyklische Vierecke · Satz des Thales
Rechtwinkliges Dreieck: Satz des Pythagoras
Ellipse: Satz vom Flüstergewölbe · Konjugierte Durchmesser
Regelmäßige Vielecke: Dreieck · Viereck · Fünfeck · Sechseck ·
Dreieck: Satz des Heron · Berechnung des Flächeninhalts des Diagonalendreiecks im Quader · Elementarer Satz zur Charakterisierung des Schwerpunkts im Dreieck via Flächeninhalte
Inzidenzgeometrie ·
affine Geometrie: einfache Hilfssätze · Homothetien und Translationen · Desarguesche affine Ebenen sind Vektorräume
Trigonometrie
Additionstheoreme: Sinus · Kosinus · Tangens · Kotangens
Trigonometriesätze: Sinussatz · Kosinussatz · Neue Folgerungen aus dem Projektionssatz der Dreiecksgeometrie


SehnensatzBearbeiten

Der Sehnensatz sagt: Schneiden zwei Sehnen einander in einem Punkt  , so ist das Produkt der jeweiligen Sehnenabschnitte gleich.

Gegeben sei ein Kreis mit zwei Sehnen die sich in einem Punkt   schneiden. Bezeichnet man die Schnittpunkte des Kreises mit der einen Sehne als   beziehungsweise   und die andere Sehne   beziehungsweise  , so gilt:

 

Diese Aussage kann man auch als Verhältnisgleichung formulieren:

 


Umgekehrt gilt auch:

Wenn für die Diagonalen eines Vierecks   mit dem Diagonalenschnittpunkt   gilt:

 

dann besitzt diese Viereck einen Umkreis!!


Der Sehnensatz lässt sich - ähnlich wie der Sekantensatz und der Sekanten-Tangenten-Satz – mit Hilfe ähnlicher Dreiecke beweisen:

Die   und   sind ähnliche Dreiecke denn:

1) Die Scheitelwinkel in   sind gleich groß  

2) Die Umfangswinkel über einer Sehne sind gleich groß; Sehne   ergibt  

beziehungsweise Sehne   ergibt  


  ähnliche Dreiecke


daraus ergibt sich die Verhältnisgleichung

 


und umgewandelt

 


Beweisarchiv: Geometrie

Schwerpunktsätze von Leibniz
Planimetrie
Kreis: Mittelpunktswinkel-Umfangswinkel · Satz des Ptolemäus · Sehnensatz · Sehnentangentenwinkel · Sehnenviereck · Sekantensatz · Japanischer Satz für konzyklische Vierecke · Satz des Thales
Rechtwinkliges Dreieck: Satz des Pythagoras
Ellipse: Satz vom Flüstergewölbe · Konjugierte Durchmesser
Regelmäßige Vielecke: Dreieck · Viereck · Fünfeck · Sechseck ·
Dreieck: Satz des Heron · Berechnung des Flächeninhalts des Diagonalendreiecks im Quader · Elementarer Satz zur Charakterisierung des Schwerpunkts im Dreieck via Flächeninhalte
Inzidenzgeometrie ·
affine Geometrie: einfache Hilfssätze · Homothetien und Translationen · Desarguesche affine Ebenen sind Vektorräume
Trigonometrie
Additionstheoreme: Sinus · Kosinus · Tangens · Kotangens
Trigonometriesätze: Sinussatz · Kosinussatz · Neue Folgerungen aus dem Projektionssatz der Dreiecksgeometrie