Energiebilanz für emittiertes oder absorbiertes Licht
Δ
E
=
E
n
−
E
m
{\displaystyle \Delta E=E_{n}-E_{m}\,}
Δ
E
=
h
⋅
f
{\displaystyle \Delta E=h\cdot f}
E
n
,
E
m
{\displaystyle E_{n},E_{m}}
= Energieniveaus des Atoms
f
{\displaystyle f}
= Frequenz des Lichtes
h
{\displaystyle h}
= Planck-Konstante
h
=
6,626
08
⋅
10
−
34
k
g
⋅
m
2
s
{\displaystyle h=6{,}62608\cdot 10^{-34}{\frac {\mathrm {kg} \cdot \mathrm {m} ^{2}}{\mathrm {s} }}}
Spektralserien des Wasserstoffatoms
1
λ
=
R
H
⋅
(
1
n
2
−
1
m
2
)
{\displaystyle {\frac {1}{\lambda }}=R_{H}\cdot \left({\frac {1}{n^{2}}}-{\frac {1}{m^{2}}}\right)}
f
=
R
y
⋅
(
1
n
2
−
1
m
2
)
|
n
<
m
{\displaystyle f=R_{y}\cdot \left({\frac {1}{n^{2}}}-{\frac {1}{m^{2}}}\right)\qquad |n<m}
λ
{\displaystyle \lambda \,}
= Wellenlänge
R
H
{\displaystyle R_{H}}
= Rydberg-Konstante
R
H
=
1,097
37315
⋅
10
7
m
−
1
{\displaystyle R_{H}=1{,}09737315\cdot 10^{7}\mathrm {m} ^{-1}}
R
y
{\displaystyle R_{y}\,}
= Rydberg-Frequenz
R
y
=
3,289
84195
⋅
10
15
H
z
{\displaystyle R_{y}=3{,}28984195\cdot 10^{15}\mathrm {Hz} }
Relative Atommasse
A
r
=
m
A
u
{\displaystyle A_{\mathrm {r} }={\frac {m_{\mathrm {A} }}{\mathrm {u} }}}
m
A
{\displaystyle m_{\mathrm {A} }}
= Masse des Atoms
u = atomare Masseneinheit
1
u
=
1,660
540
⋅
10
−
27
k
g
{\displaystyle 1\,\mathrm {u} =1{,}660540\cdot 10^{-27}\,\mathrm {kg} }
Nukleonenzahl (Massenzahl)
A
=
Z
+
N
{\displaystyle A=Z+N}
X
{\displaystyle X}
= Symbol des Elements
Z
{\displaystyle Z}
= Protonenzahl (Kernladungszahl, Ordnungszahl im Periodensystem)
A
{\displaystyle A}
= Massenzahl
N
{\displaystyle N}
= Neutronenzahl
m
p
{\displaystyle m_{p}}
= Masse eines Protons
m
p
=
1,672
6231
⋅
10
−
27
k
g
{\displaystyle m_{p}=1{,}6726231\cdot 10^{-27}\,\mathrm {kg} }
m
n
{\displaystyle m_{n}}
= Masse eines Neutrons
m
n
=
1,674
9286
⋅
10
−
27
k
g
{\displaystyle m_{n}=1{,}6749286\cdot 10^{-27}\,\mathrm {kg} }
c
{\displaystyle c}
= Lichtgeschwindigkeit im Vakuum
c
=
2,997
92458
⋅
10
8
m
s
{\displaystyle c=2{,}99792458\cdot 10^{8}{\frac {\mathrm {m} }{\mathrm {s} }}}
Symbolschreibweise
Z
A
X
{\displaystyle {}_{Z}^{A}X}
Kernmasse
m
K
{\displaystyle m_{\mathrm {K} }}
und Massendefekt
Δ
m
{\displaystyle \Delta m}
m
K
<
Z
⋅
m
p
+
N
⋅
m
n
{\displaystyle m_{\mathrm {K} }<Z\cdot m_{p}+N\cdot m_{n}}
Δ
m
=
(
Z
⋅
m
p
+
N
⋅
m
n
)
−
m
K
{\displaystyle \Delta m=\left(Z\cdot m_{p}+N\cdot m_{n}\right)-m_{\mathrm {K} }}
Kernbindungsenergie
E
B
=
Δ
m
⋅
c
2
{\displaystyle E_{\mathrm {B} }=\Delta m\cdot c^{2}}