Beweisarchiv: Topologie: Limes von Hausdorffräumen

Beweisarchiv: Topologie

Grundlagen: Stetige Bijektion von kompakt nach Hausdorff · Top hat Limites · Produkt von Hausdorffräumen · Limes von Hausdorffräumen · Limes von kompakten Hausdorffräumen
Satz von Tychonoff · Über den weierstraßschen Satz vom Maximum und Minimum · Kompaktheit und Zusammenhang reeller Intervalle · Analogon zum Satz von Baire für endlich viele abgeschlossene Teilmengen · Der Satz von Poincaré-Bohl impliziert den Satz von Poincaré-Brouwer.


Wir zeigen, dass ein Limes eines Diagramms von Hausdorffräumen in der Kategorie topologischer Räume Hausdorffsch ist.

Sei   ein Diagramm von Hausdorff-Räumen in der Kategorie der topologischen Räume. Dann ist der Limes in der Kategorie topologischer Räume   ein Hausdorff-Raum. Insbesondere ist die Kategorie   der Hausdorff-Räume mit stetigen Abbildungen vollständig und der Inklusionsfunktor   erhält Limites.

Per Konstruktion ist   ein Teilraum von  . Ein Teilraum eines Hausdorff-Raumes ist Hausdorff. Es genügt also zu zeigen, dass das Produkt Hausdorffsch ist. Das wurde in Beweisarchiv:_Topologie:_Produkt_von_Hausdorffräumen gezeigt.