Geodätische Koordinaten auf dem Rotationsellipsoid Das Rotationsellipsoid mit Kreisform der Breitenkreise (in der Äquatorebene Radius der großen Halbachse A) und Ellipsenform bezüglich der Längenkreise. Kleine Halbachse an den Polen ist B.
Die w:Exzentrizität (Mathematik) gibt die Abplattung aufgrund der unterschiedlichen Länge von A und B an.
(Gaußsche) Tangentenvektoren
Bearbeiten
Siehe Gaußsches Dreibein
g
→
1
=
x
→
U
=
{\displaystyle {\vec {g}}_{1}={\vec {x}}_{U}=}
g
→
2
=
x
→
V
=
{\displaystyle {\vec {g}}_{2}={\vec {x}}_{V}=}
g
→
3
=
x
→
U
(
u
)
×
x
→
V
(
v
)
|
|
x
→
U
(
u
)
×
x
→
V
(
v
)
|
|
=
{\displaystyle {\vec {g}}_{3}={\frac {{\vec {x}}_{U}(u)\times {\vec {x}}_{V}(v)}{||{\vec {x}}_{U}(u)\times {\vec {x}}_{V}(v)||}}=}
erste Fundamentalform
Bearbeiten
zweite Fundamentalform
Bearbeiten
Siehe hier . Mit u1 = u, u2 = v.
α
=
1
{\displaystyle \alpha =1}
,
β
=
1
{\displaystyle \beta =1}
,
γ
=
1
{\displaystyle \gamma =1}
Γ
11
1
:=
1
2
g
11
(
∂
g
11
∂
u
1
+
∂
g
11
∂
u
1
−
∂
g
11
∂
u
1
)
+
1
2
g
12
(
∂
g
12
∂
u
1
+
∂
g
21
∂
u
1
−
∂
g
11
∂
u
2
)
=
{\displaystyle \Gamma _{11}^{1}:={\frac {1}{2}}g^{11}({\frac {\partial g_{11}}{\partial u^{1}}}+{\frac {\partial g_{11}}{\partial u^{1}}}-{\frac {\partial g_{11}}{\partial u^{1}}})+{\frac {1}{2}}g^{12}({\frac {\partial g_{12}}{\partial u^{1}}}+{\frac {\partial g_{21}}{\partial u^{1}}}-{\frac {\partial g_{11}}{\partial u^{2}}})=}
α
=
2
{\displaystyle \alpha =2}
,
β
=
1
{\displaystyle \beta =1}
,
γ
=
1
{\displaystyle \gamma =1}
Γ
12
1
:=
1
2
g
11
(
∂
g
11
∂
u
2
+
∂
g
12
∂
u
1
−
∂
g
21
∂
u
1
)
+
1
2
g
12
(
∂
g
12
∂
u
2
+
∂
g
22
∂
u
1
−
∂
g
21
∂
u
2
)
=
{\displaystyle \Gamma _{12}^{1}:={\frac {1}{2}}g^{11}({\frac {\partial g_{11}}{\partial u^{2}}}+{\frac {\partial g_{12}}{\partial u^{1}}}-{\frac {\partial g_{21}}{\partial u^{1}}})+{\frac {1}{2}}g^{12}({\frac {\partial g_{12}}{\partial u^{2}}}+{\frac {\partial g_{22}}{\partial u^{1}}}-{\frac {\partial g_{21}}{\partial u^{2}}})=}
α
=
1
{\displaystyle \alpha =1}
,
β
=
2
{\displaystyle \beta =2}
,
γ
=
1
{\displaystyle \gamma =1}
Γ
11
2
:=
1
2
g
21
(
∂
g
11
∂
u
1
+
∂
g
11
∂
u
1
−
∂
g
11
∂
u
1
)
+
1
2
g
22
(
∂
g
12
∂
u
1
+
∂
g
21
∂
u
1
−
∂
g
11
∂
u
2
)
=
{\displaystyle \Gamma _{11}^{2}:={\frac {1}{2}}g^{21}({\frac {\partial g_{11}}{\partial u^{1}}}+{\frac {\partial g_{11}}{\partial u^{1}}}-{\frac {\partial g_{11}}{\partial u^{1}}})+{\frac {1}{2}}g^{22}({\frac {\partial g_{12}}{\partial u^{1}}}+{\frac {\partial g_{21}}{\partial u^{1}}}-{\frac {\partial g_{11}}{\partial u^{2}}})=}
α
=
1
{\displaystyle \alpha =1}
,
β
=
1
{\displaystyle \beta =1}
,
γ
=
2
{\displaystyle \gamma =2}
Γ
21
1
=
Γ
12
1
{\displaystyle \Gamma _{21}^{1}=\Gamma _{12}^{1}}
α
=
2
{\displaystyle \alpha =2}
,
β
=
1
{\displaystyle \beta =1}
,
γ
=
2
{\displaystyle \gamma =2}
,
Γ
12
2
:=
1
2
g
11
(
∂
g
21
∂
u
2
+
∂
g
12
∂
u
2
−
∂
g
22
∂
u
1
)
+
1
2
g
12
(
∂
g
22
∂
u
2
+
∂
g
22
∂
u
2
−
∂
g
22
∂
u
2
)
=
{\displaystyle \Gamma _{12}^{2}:={\frac {1}{2}}g^{11}({\frac {\partial g_{21}}{\partial u^{2}}}+{\frac {\partial g_{12}}{\partial u^{2}}}-{\frac {\partial g_{22}}{\partial u^{1}}})+{\frac {1}{2}}g^{12}({\frac {\partial g_{22}}{\partial u^{2}}}+{\frac {\partial g_{22}}{\partial u^{2}}}-{\frac {\partial g_{22}}{\partial u^{2}}})=}
α
=
1
{\displaystyle \alpha =1}
,
β
=
2
{\displaystyle \beta =2}
,
γ
=
2
{\displaystyle \gamma =2}
Γ
21
2
=
Γ
12
2
{\displaystyle \Gamma _{21}^{2}=\Gamma _{12}^{2}}
α
=
2
{\displaystyle \alpha =2}
,
β
=
2
{\displaystyle \beta =2}
,
γ
=
2
{\displaystyle \gamma =2}
Γ
22
2
:=
1
2
g
21
(
∂
g
21
∂
u
2
+
∂
g
12
∂
u
2
−
∂
g
22
∂
u
1
)
+
1
2
g
22
(
∂
g
22
∂
u
2
+
∂
g
22
∂
u
2
−
∂
g
22
∂
u
2
)
=
{\displaystyle \Gamma _{22}^{2}:={\frac {1}{2}}g^{21}({\frac {\partial g_{21}}{\partial u^{2}}}+{\frac {\partial g_{12}}{\partial u^{2}}}-{\frac {\partial g_{22}}{\partial u^{1}}})+{\frac {1}{2}}g^{22}({\frac {\partial g_{22}}{\partial u^{2}}}+{\frac {\partial g_{22}}{\partial u^{2}}}-{\frac {\partial g_{22}}{\partial u^{2}}})=}
Zurück zum Inhaltsverzeichnis