Diffgeo: Flächentheorie: Christoffelsymbole


Christoffelsymbole Bearbeiten

Die Christoffelsymbole sind weitere Abkürzungen. Sie werden bei der Berechnung der Ableitungen der Beine eingesetzt, was in diesem Buch nicht geschildert ist. Sie spielen außerdem bei der Bestimmung des totalen Differentials von Azimut und Strecke eine Rolle. Dies ist in der Landesvermessung wichtig.

Wie wir bereits wissen, lautet der Krümmungsvektor:

 

Nun lassen sich aber die Vektoren

 
 
 

ebenfalls in Tangentialanteil und Normalenanteil zerlegen, nämlich:

 
 
 

Die vordere Klammer mit den Christoffelsymbolen ist der Tangentialteil, die hintere Klammer der Normalenanteil bzw. zweite Fundamentalform. Nun setzen wir diese Vektoren in den oberen Ausdruck für den Krümmungsvektor ein und sortieren erneut nach Tangential- und Normalenanteile. Dann erhalten wir für den Krümmungsvektor (in verkürzter Indexschreibweise):

 

Bei einer Geodäte verschwindet der geodätische (also tangentiale) Anteil:

 

Wegen der Linearität des Skalarprodukts gilt:

 

Damit erhält man:

 

Über die Vertauschung der Indizes gelangt man schließlich zur nachfolgenden Definition.


Definition der Christoffelsymbole

 

Mit   und  , also der Inversen des ersten Fundamentaltensors.

Es gibt insgesamt 8 Christoffelsymbole. Es sind keine 16, da   nicht am
Christoffelsymbol steht. Vielmehr wird für jedes der Symbole die rechte
Seite für   bzw.   aufgestellt und addiert.


Konventionen Bearbeiten

  • Eine Fundamentalgröße mit hochgestellten Index stammt aus der Inversen des ersten Fundamentaltensors.
  • u1 und u2 bezeichnen die gaußschen Flächenparameter u und v.

Besonderheiten Bearbeiten

Christoffelsymbole mit gemischtem unteren Index sind gleich:

 

Bei Flächen mit orthogonalen Parameterlinien ist die Fundamentalgröße mit gemischten Index g12=0, wodurch auch der Anteil des Christoffelsymbol für   zu Null wird.

Ausgeschrieben Bearbeiten

Das ganze einmal ausgeschrieben sieht so aus:

 ,  ,  

 

 ,  ,  

 

 ,  ,  

 

 ,  ,  

 

 ,  ,  

 

 ,  ,  

 

 ,  ,  

 

 ,  ,