Die Christoffelsymbole sind weitere Abkürzungen. Sie werden bei der Berechnung der Ableitungen der Beine eingesetzt, was in diesem Buch nicht geschildert ist. Sie spielen außerdem bei der Bestimmung des totalen Differentials von Azimut und Strecke eine Rolle. Dies ist in der Landesvermessung wichtig.
Wie wir bereits wissen, lautet der Krümmungsvektor:
x
→
″
=
x
→
u
⋅
u
″
+
x
→
v
⋅
v
″
+
x
→
u
u
⋅
u
′
2
+
2
x
→
u
v
⋅
u
′
v
′
+
x
→
v
v
⋅
v
′
2
{\displaystyle {\vec {x}}''={\vec {x}}_{u}\cdot u''+{\vec {x}}_{v}\cdot v''+{\vec {x}}_{uu}\cdot u'^{2}+2{\vec {x}}_{uv}\cdot u'v'+{\vec {x}}_{vv}\cdot v'^{2}}
Nun lassen sich aber die Vektoren
x
→
u
u
{\displaystyle {\vec {x}}_{uu}}
x
→
u
v
{\displaystyle {\vec {x}}_{uv}}
x
→
v
v
{\displaystyle {\vec {x}}_{vv}}
ebenfalls in Tangentialanteil und Normalenanteil zerlegen, nämlich:
x
→
u
u
=
(
Γ
u
u
u
⋅
x
→
u
+
Γ
u
u
v
⋅
x
→
v
)
+
n
→
⋅
(
n
→
⋅
x
→
u
u
)
{\displaystyle {\vec {x}}_{uu}=(\Gamma _{uu}^{u}\cdot {\vec {x}}_{u}+\Gamma _{uu}^{v}\cdot {\vec {x}}_{v})+{\vec {n}}\cdot ({\vec {n}}\cdot {\vec {x}}_{uu})}
x
→
u
v
=
(
Γ
u
v
u
⋅
x
→
u
+
Γ
u
v
v
⋅
x
→
v
)
+
n
→
⋅
(
n
→
⋅
x
→
u
v
)
{\displaystyle {\vec {x}}_{uv}=(\Gamma _{uv}^{u}\cdot {\vec {x}}_{u}+\Gamma _{uv}^{v}\cdot {\vec {x}}_{v})+{\vec {n}}\cdot ({\vec {n}}\cdot {\vec {x}}_{uv})}
x
→
v
v
=
(
Γ
v
v
u
⋅
x
→
u
+
Γ
v
v
v
⋅
x
→
v
)
+
n
→
⋅
(
n
→
⋅
x
→
v
v
)
{\displaystyle {\vec {x}}_{vv}=(\Gamma _{vv}^{u}\cdot {\vec {x}}_{u}+\Gamma _{vv}^{v}\cdot {\vec {x}}_{v})+{\vec {n}}\cdot ({\vec {n}}\cdot {\vec {x}}_{vv})}
Die vordere Klammer mit den Christoffelsymbolen ist der Tangentialteil, die hintere Klammer der Normalenanteil bzw. zweite Fundamentalform.
Nun setzen wir diese Vektoren in den oberen Ausdruck für den Krümmungsvektor ein und sortieren erneut nach Tangential- und Normalenanteile.
Dann erhalten wir für den Krümmungsvektor (in verkürzter Indexschreibweise):
x
→
(
s
)
″
=
(
u
″
l
+
Γ
i
j
l
u
′
i
v
′
j
)
⋅
x
→
l
+
n
→
⋅
(
L
i
j
u
′
i
v
′
j
)
=
κ
g
⋅
s
→
+
κ
n
⋅
n
→
{\displaystyle {\vec {x}}(s)''=(u''^{l}+\Gamma _{ij}^{l}u'^{i}v'^{j})\cdot {\vec {x}}_{l}+{\vec {n}}\cdot (L_{ij}u'^{i}v'^{j})=\kappa _{g}\cdot {\vec {s}}+\kappa _{n}\cdot {\vec {n}}}
Bei einer Geodäte verschwindet der geodätische (also tangentiale) Anteil:
0
=
(
u
″
l
+
Γ
i
j
l
u
′
i
v
′
j
)
{\displaystyle 0=(u''^{l}+\Gamma _{ij}^{l}u'^{i}v'^{j})}
Wegen der Linearität des Skalarprodukts gilt:
x
→
i
j
⋅
x
→
q
=
(
Γ
i
j
l
x
→
l
+
n
→
L
i
j
)
⋅
x
→
q
=
Γ
i
j
l
x
→
l
⋅
x
→
q
+
n
→
L
i
j
⋅
x
→
q
=
Γ
i
j
l
x
→
l
⋅
x
→
q
+
0
=
Γ
i
j
l
x
→
l
⋅
x
→
q
=
Γ
i
j
l
g
l
q
=
Γ
i
j
|
q
{\displaystyle {\vec {x}}_{ij}\cdot {\vec {x}}_{q}=(\Gamma _{ij}^{l}{\vec {x}}_{l}+{\vec {n}}L_{ij})\cdot {\vec {x}}_{q}=\Gamma _{ij}^{l}{\vec {x}}_{l}\cdot {\vec {x}}_{q}+{\vec {n}}L_{ij}\cdot {\vec {x}}_{q}=\Gamma _{ij}^{l}{\vec {x}}_{l}\cdot {\vec {x}}_{q}+0=\Gamma _{ij}^{l}{\vec {x}}_{l}\cdot {\vec {x}}_{q}=\Gamma _{ij}^{l}g_{lq}=\Gamma _{ij|q}}
Damit erhält man:
∂
g
α
γ
∂
u
δ
=
∂
(
x
→
α
⋅
x
→
γ
)
∂
u
δ
=
x
→
α
δ
⋅
x
→
γ
+
x
→
α
⋅
x
→
γ
δ
=
Γ
α
δ
|
γ
+
Γ
γ
δ
|
α
{\displaystyle {\frac {\partial g_{\alpha \gamma }}{\partial u^{\delta }}}={\frac {\partial ({\vec {x}}_{\alpha }\cdot {\vec {x}}_{\gamma })}{\partial u^{\delta }}}={\vec {x}}_{\alpha \delta }\cdot {\vec {x}}_{\gamma }+{\vec {x}}_{\alpha }\cdot {\vec {x}}_{\gamma \delta }=\Gamma _{\alpha \delta |\gamma }+\Gamma _{\gamma \delta |\alpha }}
Über die Vertauschung der Indizes gelangt man schließlich zur nachfolgenden Definition.
Eine Fundamentalgröße mit hochgestellten Index stammt aus der Inversen des ersten Fundamentaltensors .
u1 und u2 bezeichnen die gaußschen Flächenparameter u und v.
Christoffelsymbole mit gemischtem unteren Index sind gleich:
Γ
12
β
=
Γ
21
β
{\displaystyle \Gamma _{12}^{\beta }=\Gamma _{21}^{\beta }}
Bei Flächen mit orthogonalen Parameterlinien ist die Fundamentalgröße mit gemischten Index g12 =0, wodurch auch der Anteil des Christoffelsymbol für
δ
≠
β
{\displaystyle \delta \neq \beta }
zu Null wird.
Das ganze einmal ausgeschrieben sieht so aus:
α
=
1
{\displaystyle \alpha =1}
,
β
=
1
{\displaystyle \beta =1}
,
γ
=
1
{\displaystyle \gamma =1}
Γ
11
1
:=
1
2
g
11
(
∂
g
11
∂
u
1
+
∂
g
11
∂
u
1
−
∂
g
11
∂
u
1
)
+
1
2
g
12
(
∂
g
12
∂
u
1
+
∂
g
21
∂
u
1
−
∂
g
11
∂
u
2
)
{\displaystyle \Gamma _{11}^{1}:={\frac {1}{2}}g^{11}({\frac {\partial g_{11}}{\partial u^{1}}}+{\frac {\partial g_{11}}{\partial u^{1}}}-{\frac {\partial g_{11}}{\partial u^{1}}})+{\frac {1}{2}}g^{12}({\frac {\partial g_{12}}{\partial u^{1}}}+{\frac {\partial g_{21}}{\partial u^{1}}}-{\frac {\partial g_{11}}{\partial u^{2}}})}
α
=
2
{\displaystyle \alpha =2}
,
β
=
1
{\displaystyle \beta =1}
,
γ
=
1
{\displaystyle \gamma =1}
Γ
12
1
:=
1
2
g
11
(
∂
g
11
∂
u
2
+
∂
g
12
∂
u
1
−
∂
g
21
∂
u
1
)
+
1
2
g
12
(
∂
g
12
∂
u
2
+
∂
g
22
∂
u
1
−
∂
g
21
∂
u
2
)
{\displaystyle \Gamma _{12}^{1}:={\frac {1}{2}}g^{11}({\frac {\partial g_{11}}{\partial u^{2}}}+{\frac {\partial g_{12}}{\partial u^{1}}}-{\frac {\partial g_{21}}{\partial u^{1}}})+{\frac {1}{2}}g^{12}({\frac {\partial g_{12}}{\partial u^{2}}}+{\frac {\partial g_{22}}{\partial u^{1}}}-{\frac {\partial g_{21}}{\partial u^{2}}})}
α
=
1
{\displaystyle \alpha =1}
,
β
=
2
{\displaystyle \beta =2}
,
γ
=
1
{\displaystyle \gamma =1}
Γ
11
2
:=
1
2
g
21
(
∂
g
11
∂
u
1
+
∂
g
11
∂
u
1
−
∂
g
11
∂
u
1
)
+
1
2
g
22
(
∂
g
12
∂
u
1
+
∂
g
21
∂
u
1
−
∂
g
11
∂
u
2
)
{\displaystyle \Gamma _{11}^{2}:={\frac {1}{2}}g^{21}({\frac {\partial g_{11}}{\partial u^{1}}}+{\frac {\partial g_{11}}{\partial u^{1}}}-{\frac {\partial g_{11}}{\partial u^{1}}})+{\frac {1}{2}}g^{22}({\frac {\partial g_{12}}{\partial u^{1}}}+{\frac {\partial g_{21}}{\partial u^{1}}}-{\frac {\partial g_{11}}{\partial u^{2}}})}
α
=
2
{\displaystyle \alpha =2}
,
β
=
2
{\displaystyle \beta =2}
,
γ
=
1
{\displaystyle \gamma =1}
Γ
12
2
:=
1
2
g
21
(
∂
g
11
∂
u
2
+
∂
g
12
∂
u
1
−
∂
g
21
∂
u
1
)
+
1
2
g
22
(
∂
g
12
∂
u
2
+
∂
g
22
∂
u
1
−
∂
g
21
∂
u
2
)
{\displaystyle \Gamma _{12}^{2}:={\frac {1}{2}}g^{21}({\frac {\partial g_{11}}{\partial u^{2}}}+{\frac {\partial g_{12}}{\partial u^{1}}}-{\frac {\partial g_{21}}{\partial u^{1}}})+{\frac {1}{2}}g^{22}({\frac {\partial g_{12}}{\partial u^{2}}}+{\frac {\partial g_{22}}{\partial u^{1}}}-{\frac {\partial g_{21}}{\partial u^{2}}})}
α
=
1
{\displaystyle \alpha =1}
,
β
=
1
{\displaystyle \beta =1}
,
γ
=
2
{\displaystyle \gamma =2}
Γ
21
1
=
Γ
12
1
{\displaystyle \Gamma _{21}^{1}=\Gamma _{12}^{1}}
α
=
2
{\displaystyle \alpha =2}
,
β
=
1
{\displaystyle \beta =1}
,
γ
=
2
{\displaystyle \gamma =2}
Γ
22
1
:=
1
2
g
11
(
∂
g
21
∂
u
2
+
∂
g
12
∂
u
2
−
∂
g
22
∂
u
1
)
+
1
2
g
12
(
∂
g
22
∂
u
2
+
∂
g
22
∂
u
2
−
∂
g
22
∂
u
2
)
{\displaystyle \Gamma _{22}^{1}:={\frac {1}{2}}g^{11}({\frac {\partial g_{21}}{\partial u^{2}}}+{\frac {\partial g_{12}}{\partial u^{2}}}-{\frac {\partial g_{22}}{\partial u^{1}}})+{\frac {1}{2}}g^{12}({\frac {\partial g_{22}}{\partial u^{2}}}+{\frac {\partial g_{22}}{\partial u^{2}}}-{\frac {\partial g_{22}}{\partial u^{2}}})}
α
=
1
{\displaystyle \alpha =1}
,
β
=
2
{\displaystyle \beta =2}
,
γ
=
2
{\displaystyle \gamma =2}
Γ
21
2
=
Γ
12
2
{\displaystyle \Gamma _{21}^{2}=\Gamma _{12}^{2}}
α
=
2
{\displaystyle \alpha =2}
,
β
=
2
{\displaystyle \beta =2}
,
γ
=
2
{\displaystyle \gamma =2}
Γ
22
2
:=
1
2
g
21
(
∂
g
21
∂
u
2
+
∂
g
12
∂
u
2
−
∂
g
22
∂
u
1
)
+
1
2
g
22
(
∂
g
22
∂
u
2
+
∂
g
22
∂
u
2
−
∂
g
22
∂
u
2
)
{\displaystyle \Gamma _{22}^{2}:={\frac {1}{2}}g^{21}({\frac {\partial g_{21}}{\partial u^{2}}}+{\frac {\partial g_{12}}{\partial u^{2}}}-{\frac {\partial g_{22}}{\partial u^{1}}})+{\frac {1}{2}}g^{22}({\frac {\partial g_{22}}{\partial u^{2}}}+{\frac {\partial g_{22}}{\partial u^{2}}}-{\frac {\partial g_{22}}{\partial u^{2}}})}