Ein Drehparaboloid entsteht durch Rotation einer in einer Ebene liegenden Parabel um eine Achse.
Zum Beispiel wenn die in der x-z liegende Parabel z=x2 (Definitionsbereich begrenzt) um die z-Achse rotiert.
Durch die Rotation ist der Rand der Fläche ein Kreis.
x
→
=
v
cos
u
e
→
1
+
v
sin
u
e
→
2
+
A
⋅
v
2
e
→
3
{\displaystyle {\vec {x}}=v\cos u{\vec {e}}_{1}+v\sin u{\vec {e}}_{2}+A\cdot v^{2}{\vec {e}}_{3}}
v
∈
[
0
,
2
π
]
,
u
∈
[
−
π
,
π
]
,
A
∈
R
{\displaystyle v\in [0,2\pi ],u\in [-\pi ,\pi ],A\in \mathbb {R} }
Zurück zum Inhaltsverzeichnis
Siehe hier . Mit u1 = u, u2 = v.
α
=
1
{\displaystyle \alpha =1}
,
β
=
1
{\displaystyle \beta =1}
,
γ
=
1
{\displaystyle \gamma =1}
Γ
11
1
:=
1
2
g
11
(
∂
g
11
∂
u
1
+
∂
g
11
∂
u
1
−
∂
g
11
∂
u
1
)
+
1
2
g
12
(
∂
g
12
∂
u
1
+
∂
g
21
∂
u
1
−
∂
g
11
∂
u
2
)
=
1
2
1
v
4
+
4
A
2
v
6
⋅
(
0
+
0
+
0
)
+
1
2
⋅
0
=
0
{\displaystyle \Gamma _{11}^{1}:={\frac {1}{2}}g^{11}({\frac {\partial g_{11}}{\partial u^{1}}}+{\frac {\partial g_{11}}{\partial u^{1}}}-{\frac {\partial g_{11}}{\partial u^{1}}})+{\frac {1}{2}}g^{12}({\frac {\partial g_{12}}{\partial u^{1}}}+{\frac {\partial g_{21}}{\partial u^{1}}}-{\frac {\partial g_{11}}{\partial u^{2}}})={\frac {1}{2}}{\frac {1}{v^{4}+4A^{2}v^{6}}}\cdot (0+0+0)+{\frac {1}{2}}\cdot 0=0}
α
=
2
{\displaystyle \alpha =2}
,
β
=
1
{\displaystyle \beta =1}
,
γ
=
1
{\displaystyle \gamma =1}
Γ
12
1
:=
1
2
g
11
(
∂
g
11
∂
u
2
+
∂
g
12
∂
u
1
−
∂
g
21
∂
u
1
)
+
1
2
g
12
(
∂
g
12
∂
u
2
+
∂
g
22
∂
u
1
−
∂
g
21
∂
u
2
)
=
1
2
v
2
⋅
2
v
=
1
v
{\displaystyle \Gamma _{12}^{1}:={\frac {1}{2}}g^{11}({\frac {\partial g_{11}}{\partial u^{2}}}+{\frac {\partial g_{12}}{\partial u^{1}}}-{\frac {\partial g_{21}}{\partial u^{1}}})+{\frac {1}{2}}g^{12}({\frac {\partial g_{12}}{\partial u^{2}}}+{\frac {\partial g_{22}}{\partial u^{1}}}-{\frac {\partial g_{21}}{\partial u^{2}}})={\frac {1}{2v^{2}}}\cdot 2v={\frac {1}{v}}}
α
=
1
{\displaystyle \alpha =1}
,
β
=
2
{\displaystyle \beta =2}
,
γ
=
1
{\displaystyle \gamma =1}
Γ
11
2
:=
1
2
g
21
(
∂
g
11
∂
u
1
+
∂
g
11
∂
u
1
−
∂
g
11
∂
u
1
)
+
1
2
g
22
(
∂
g
12
∂
u
1
+
∂
g
21
∂
u
1
−
∂
g
11
∂
u
2
)
=
0
+
1
2
(
1
+
4
A
2
v
2
)
⋅
(
−
2
v
)
=
−
v
1
+
4
A
2
v
2
{\displaystyle \Gamma _{11}^{2}:={\frac {1}{2}}g^{21}({\frac {\partial g_{11}}{\partial u^{1}}}+{\frac {\partial g_{11}}{\partial u^{1}}}-{\frac {\partial g_{11}}{\partial u^{1}}})+{\frac {1}{2}}g^{22}({\frac {\partial g_{12}}{\partial u^{1}}}+{\frac {\partial g_{21}}{\partial u^{1}}}-{\frac {\partial g_{11}}{\partial u^{2}}})=0+{\frac {1}{2(1+4A^{2}v^{2})}}\cdot (-2v)=-{\frac {v}{1+4A^{2}v^{2}}}}
α
=
1
{\displaystyle \alpha =1}
,
β
=
1
{\displaystyle \beta =1}
,
γ
=
2
{\displaystyle \gamma =2}
Γ
21
1
=
Γ
12
1
{\displaystyle \Gamma _{21}^{1}=\Gamma _{12}^{1}}
α
=
2
{\displaystyle \alpha =2}
,
β
=
1
{\displaystyle \beta =1}
,
γ
=
2
{\displaystyle \gamma =2}
,
Γ
12
2
:=
1
2
g
11
(
∂
g
21
∂
u
2
+
∂
g
12
∂
u
2
−
∂
g
22
∂
u
1
)
+
1
2
g
12
(
∂
g
22
∂
u
2
+
∂
g
22
∂
u
2
−
∂
g
22
∂
u
2
)
=
0
{\displaystyle \Gamma _{12}^{2}:={\frac {1}{2}}g^{11}({\frac {\partial g_{21}}{\partial u^{2}}}+{\frac {\partial g_{12}}{\partial u^{2}}}-{\frac {\partial g_{22}}{\partial u^{1}}})+{\frac {1}{2}}g^{12}({\frac {\partial g_{22}}{\partial u^{2}}}+{\frac {\partial g_{22}}{\partial u^{2}}}-{\frac {\partial g_{22}}{\partial u^{2}}})=0}
α
=
1
{\displaystyle \alpha =1}
,
β
=
2
{\displaystyle \beta =2}
,
γ
=
2
{\displaystyle \gamma =2}
Γ
21
2
=
Γ
12
2
{\displaystyle \Gamma _{21}^{2}=\Gamma _{12}^{2}}
α
=
2
{\displaystyle \alpha =2}
,
β
=
2
{\displaystyle \beta =2}
,
γ
=
2
{\displaystyle \gamma =2}
Γ
22
2
:=
1
2
g
21
(
∂
g
21
∂
u
2
+
∂
g
12
∂
u
2
−
∂
g
22
∂
u
1
)
+
1
2
g
22
(
∂
g
22
∂
u
2
+
∂
g
22
∂
u
2
−
∂
g
22
∂
u
2
)
=
1
2
(
1
+
4
A
2
v
2
)
⋅
8
A
2
v
=
4
A
2
1
+
4
A
2
v
2
{\displaystyle \Gamma _{22}^{2}:={\frac {1}{2}}g^{21}({\frac {\partial g_{21}}{\partial u^{2}}}+{\frac {\partial g_{12}}{\partial u^{2}}}-{\frac {\partial g_{22}}{\partial u^{1}}})+{\frac {1}{2}}g^{22}({\frac {\partial g_{22}}{\partial u^{2}}}+{\frac {\partial g_{22}}{\partial u^{2}}}-{\frac {\partial g_{22}}{\partial u^{2}}})={\frac {1}{2(1+4A^{2}v^{2})}}\cdot 8A^{2}v={\frac {4A^{2}}{1+4A^{2}v^{2}}}}
Zurück zum Inhaltsverzeichnis