Seitentitel: Planimetrie/ Polygonkonstruktionen/ Neuneck
(Planimetrie/ Polygonkonstruktionen/ Neuneck)
(Planimetrie/ Polygonkonstruktionen/ Neuneck)

Neuneck (Nonagon)

Bearbeiten
  • Näherungskonstruktion für das regelmäßige Neuneck, auch mit Zirkel und Lineal ohne Maßeinteilung darstellbar.
  • Einleitung und Erklärungen zu "Mathematische Zusammenhänge", "Konstruktionen" mit weiteren Näherungskonstruktionen u. a. m. sind in dem Artikel   Neuneck enthalten.

Konstruktion

Bearbeiten

Besonderheit

Bearbeiten
  • Die Darstellung zeigt eine Konstruktion bei gegebenem Umkreis. Eine Alternative bei gegebener Seite ist mit "alternativ" gekennzeichnet.

Konstruktion bei gegebenem Umkreis

Bearbeiten
 
01-Neuneck
  1. Zeichne eine frei wählbare Strecke MJ.
  2. Bestimme den Punkt S auf der Strecke MJ. In der Darstellung wurde hierfür die Strecke MJ halbiert. Prinzipiell ist die Lage des Punktes S bei gegebenem Umkreis frei wählbar.
  3. Zeichne um den Punkt M einen Kreis durch den Punkt S, es ist der Umkreis des späteren Neunecks.
  4. Ziehe einen kurzen Kreisbogen um den Punkt J mit dem Radius MJ.
  5. Bestimme den Punkt B mit einem Abstand |SB|, der gleich lang ist wie die Strecke MS. Dies ist der erste Eckpunkt des entstehenden Neunecks.
  6. Zeichne eine gerade Linie ab dem Punkt M bis zum kurzen Kreisebogen, es ergibt sich der Schnittpunkt K.
  7. Verbinde den Punkt K mit dem Punkt J, somit entsteht das gleichseitige Dreieck MJK.
  8. Konstruiere vom Winkel   die Winkelhalbierende W1.
  9. Konstruiere vom Winkel   die Winkelhalbierende W2, mit einer Länge ca. drei Viertel der Strecke MJ.
  10. Konstruiere vom Winkel   die Winkelhalbierende W3, etwas länger als die Strecke MJ.
  11. Konstruiere vom Winkel   die Winkelhalbierende W4, mit einer Länge etwa gleich lang wie die Winkelhalbierende W3.
  12. Zeichne den Kreisbogen b um den Punkt M, ab dem Punkt K bis zur Winkelhalbierende W4, es ergibt sich der Schnittpunkt O auf W4 und der Schnittpunkt N auf W3.
  13. Zeichne eine gerade Hilfslinie g die über den Punkt O den Punkt N anvisiert (quasi ein Lineal an die Punkte O und N angelegt), aber nur bis zum Punkt O verläuft. Somit ist zwischen den Punkten O und N keine gerade Hilfslinie g und der Kreisbogen MON für den späteren Schnittpunkt R frei zugänglich.
  14. Zeichne einen Halbkreis um den Punkt O mit dem Radius |NO|, es ergibt sich auf der Hilfslinie g der Schnittpunkt P.
  15. Konstruiere auf der Hilfslinie g die Strecke PQ, sie ist ein Drittel der Strecke OP.
  16. Zeichne einen Kreis um den Punkt Q mit dem Radius OP, es ergibt sich auf dem Kreisbogen MON der Schnittpunkt R.
  17. Verbinde den Punkt R mit dem Punkt M, es ergibt sich der Schnittpunkt A auf dem Umkreis des entstehenden Neunecks.
  18. Verbinde den Punkt A mit dem Punkt B, es ergibt sich die erste Seite des entstehenden Neunecks.
  19. Trage die Strecke AB siebenmal entgegen dem Uhrzeigersinn auf dem Umkreis ab.
  20. Verbinde die benachbarten Eckpunkte miteinander, somit ergibt sich das Neuneck ABCDEFGHI.

Fehler der ersten Seite

Bearbeiten
1.0   

Gegeben:

  
1.1   
1.2   

Beispiel zur Verdeutlichung

Bearbeiten

Bei einem Umkreisradius r = 100.000 km wäre der absolute Fehler der 1. Seite ca. 8,6 mm.

Konstruktion bei gegebener Seite

Bearbeiten
  1. Zeichne eine frei wählbare Strecke MJ.
  2. Konstruiere über und mittels der Strecke MJ ein gleichseitiges Dreieck und bezeichne den dritten Eckpunkt mit K.
  3. Konstruiere vom Winkel   die Winkelhalbierende W1.
  4. Konstruiere vom Winkel   die Winkelhalbierende W2, mit einer Länge ca. drei Viertel der Strecke MJ.
  5. Konstruiere vom Winkel   die Winkelhalbierende W3, etwas länger als die Strecke MJ.
  6. Konstruiere vom Winkel   die Winkelhalbierende W4, mit einer Länge etwa gleich lang wie die Winkelhalbierende W3.
  7. Zeichne den Kreisbogen b um den Punkt M, ab dem Punkt K bis zur Winkelhalbierende W4, es ergibt sich der Schnittpunkt O auf W4 und der Schnittpunkt N auf W3.
  8. Zeichne eine gerade Hilfslinie g die über den Punkt O den Punkt N anvisiert (quasi ein Lineal an die Punkte O und N angelegt), aber nur bis zum Punkt O verläuft. Somit ist zwischen den Punkten O und N keine gerade Hilfslinie g und der Kreisbogen MON für den späteren Schnittpunkt R frei zugänglich.
  9. Zeichne einen Halbkreis um den Punkt O mit dem Radius |NO|, es ergibt sich auf der Hilfslinie g der Schnittpunkt P.
  10. Konstruiere auf der Hilfslinie g die Strecke PQ, sie ist ein Drittel der Strecke OP.
  11. Zeichne einen Kreis um den Punkt Q mit dem Radius OP, es ergibt sich auf dem Kreisbogen MON der Schnittpunkt R.
  12. Verbinde den Punkt R mit dem Punkt M.
  13. Konstruiere vom Winkel   die Winkelhalbierende W5.
  14. Zeichne auf der Winkelhalbierenden W5 einen Kreis um den in der Lage frei wählbaren Punkt T mit einem Radius, der gleich der halben gegebenen Neuneckseite ist.
  15. Konstruiere eine Senkrechte zur Winkelhalbierende W5 durch den Punkt T, es ergibt sich auf dem Kreis um Punkt T der Schnittpunkt V.
  16. Konstruiere eine Parallele zur Winkelhalbierende W5 ab dem Punkt V bis zur Strecke MK, es ergibt sich der Schnittpunkt B. Dies ist der erste Eckpunkt des entstehenden Neunecks.
  17. Zeichne um den Punkt M einen Kreis durch den Punkt B, es ist der Umkreis des entstehenden Neunecks. Es ergibt sich der Schnittpunkt A auf der Strecke MR.
  18. Verbinde den Punkt A mit dem Punkt B, dies ist die erste Seite des entstehenden Neunecks.
  19. Trage die Strecke AB siebenmal entgegen dem Uhrzeigersinn auf dem Umkreis ab.
  20. Verbinde die benachbarten Eckpunkte miteinander, somit ergibt sich das Neuneck ABCDEFGHI.

Fehler des Umkreisradius

Bearbeiten
2.0   

Gegeben:

  
  
  
2.1    

Beispiel zur Verdeutlichung

Bearbeiten

Bei einer Seitenlänge s1 = 10.000 km wäre der konstruierte Umfangsradius r ≈ 14.629,0219989 km um ca. 1,8 mm zu kurz.

Berechnung

Bearbeiten

Kreissektor mit gleichseitigem Dreieck MJK

Bearbeiten
 
01-Neuneck-3-Berechnungsskizze
1.0   

Gegeben aus Zeichnung:

  
  
  
  
  
  
  
  
1.1   
1.2   
1.3   


Rechtwinkeliges Dreieck PNT

Bearbeiten
2.0    

Gegeben:

  • Der Punkt   liegt mittig auf der Sekante  
  
  
2.1   
2.2   
2.3   

Rechtwinkeliges Dreieck MNU

Bearbeiten
3.0   

Gegeben:

  
  
  
  
3.1   
3.2   
3.3   

Rechtwinkeliges Dreieck MQU

Bearbeiten
4.0   

Gegeben:

  
  
  
  
4.1   
4.2   
4.3   

Stumpfwinkeliges Dreieck MQR

Bearbeiten
5.0   

Gegeben:

  
  
  
  
  

Mit dem Kosinussatz ergibt sich:

5.1    

Nebenwinkel JMR

Bearbeiten
6.0   

Gegeben:

  
  
  
6.1    

Zentriwinkel RMK

Bearbeiten
7.0   

Gegeben:

  
7.1   

Erste Seite des Neunecks

Bearbeiten
8.0   

Gegeben:

  
8.1    
8.2    

Konstruierter Umkreisradius   bei gegebener Seite s1

Bearbeiten
9.0   

Gegeben:

  
  
  
9.1    

Umkreisradius   bei gegebener Seite s1

Bearbeiten
10.0   

Gegeben:

  
  
  
10.1   
Bearbeiten

Dreiteilung des Winkels 60° in diesem Buch im Kapitel Die drei antiken Probleme

Drittel der Strecke in diesem Buch im Kapitel Verschiedenes

Neuneck mit gegebener Seitenlänge

  Winkelhalbierende

  Konstruktion einer Parallelen durch einen gegebenen Punkt

  Parallele

  Kreiswinkel (Zentriwinkel)