Betrachtet man Funktionen, die von mehreren Ortskoordinaten abhängen, so kann man sie nach jeder dieser Ortskoordinaten ableiten und das ggfs. auch mehrfach.
Einige Linearkombinationen solcher Ableitungen werden besonders häufig verwendet, z. B der Gradient, die Divergenz, der Laplace-Operator oder der Drehimpulsoperator.
Zusammenfassend bezeichnet man diese als Differentialoperatoren.
Man kann Ortskoordinaten in verschiedenen Koordinatensystemen angeben. Häufig verwendet werden kartesische Koordinaten, Zylinderkoordinaten und Kugelkoordinaten.
Betrachtet man dieselbe Funktion dargestellt in unterschiedlichen Koordinatensystemen, so sieht die Funktionsgleichung meist sehr unterschiedlich aus, jenachdem, in welchem Koordinatensystem man sie darstellt.
Genauso sehen die Differentialoperatoren in unterschiedlichen Koordinatensystem unterschiedlich aus. Im folgenden geben wir an, wie einige Differentialoperatoren in verschiedenen Koordinatensystem aussehen und anschließend rechnen wir die angegebenen Formeln nach.
Wir betrachten eine Funktion
f
:
R
3
→
R
3
{\displaystyle \mathbf {f} \colon \,\mathbb {R} ^{3}\to \mathbb {R} ^{3}}
. In Komponentenschreibweise ist
f
{\displaystyle \mathbb {f} }
gegeben durch:
f
=
(
f
x
f
y
f
z
)
{\displaystyle f=\left({\begin{matrix}f_{\mathrm {x} }\\f_{\mathrm {y} }\\f_{\mathrm {z} }\end{matrix}}\right)}
Es ist zu beachten, dass wir
f
{\displaystyle \mathbf {f} }
fett (bold) gesetzt haben, wobei wir
f
x
{\displaystyle f_{x}}
normal (regular) gesetzt haben. Hierdurch drückt man in der Regel aus, dass
f
{\displaystyle \mathbf {f} }
in einen mehrdimensionalen Vektorraum abbildet, bzw, dass
f
{\displaystyle \mathbf {f} }
mehr als eine Komponente hat oder, anders ausgedrückt,
f
{\displaystyle \mathbf {f} }
eine vektorwertige Funktion ist. Hingegen wird
f
x
{\displaystyle f_{x}}
normal gesetzt, weil es nur genau eine Komponente hat. Eine andere Möglichkeit, die Vektorwertigkeit einer Funktion auszudrücken, ist ein Pfeil über dem Funktionssymbol:
f
→
{\displaystyle {\vec {f}}}
Eine weitere Möglichkeit der Komponentenschreibweise ist:
f
=
(
f
1
f
2
f
3
)
{\displaystyle f=\left({\begin{matrix}f_{1}\\f_{2}\\f_{3}\end{matrix}}\right)}
Abkürzend hierfür schreibt man auch:
f
i
{\displaystyle f_{i}}
Hierbei haben wir alle drei Komponenten der Funktion
f
{\displaystyle \mathbf {f} }
zusammenfassend durch das Symbol
f
i
{\displaystyle f_{i}}
ausgedrückt. Hierbei fällt auf, dass der Index
i
{\displaystyle i}
im Symbol
f
i
{\displaystyle f_{i}}
kursiv gesetzt wurde. Hingegen wurde der Index
z
{\displaystyle \mathrm {z} }
im Symbol
f
z
{\displaystyle f_{\mathbf {z} }}
normal gesetzt. Auch dies ist eine Konvention. Die Vektorwertigkeit von
f
i
{\displaystyle f_{i}}
wird durch die Kursivschrift des
i
{\displaystyle i}
ausgedrückt.
Die Divergenz in kartesischen Koordinaten ist definiert durch:
d
i
v
f
=
∇
⋅
f
=
∂
f
x
∂
x
+
∂
f
y
∂
y
+
∂
f
y
∂
z
{\displaystyle \mathrm {div} f=\nabla \cdot f={\frac {\partial f_{\mathrm {x} }}{\partial \mathrm {x} }}+{\frac {\partial f_{\mathrm {y} }}{\partial \mathrm {y} }}+{\frac {\partial f_{\mathrm {y} }}{\partial \mathrm {z} }}}
Eine alternative Schreibweise ist:
∑
i
=
1
3
∂
f
i
∂
x
i
{\displaystyle \sum _{i=1}^{3}{\frac {\partial f_{i}}{\partial \mathrm {x} _{i}}}}
Diese kann man noch weiter verkürzen zu:
∂
i
f
i
{\displaystyle \partial _{i}f_{i}}
Umrechnung von Zylinderkoordinaten in kartesische Koordinaten
Bearbeiten
Die Zylinderkoordinaten werden durch folgende Gleichungen definiert:
x
=
ρ
cos
(
ϕ
)
y
=
ρ
sin
(
ϕ
)
z
=
z
{\displaystyle {\begin{matrix}x&=&\rho \cos(\phi )\\y&=&\rho \sin(\phi )\\z&=&z\end{matrix}}}
Umrechnung von kartesischen Koordinaten in Zylinderkoordinaten
Bearbeiten
Aus den Definitionsgleichungen erhält man:
ρ
=
x
2
+
y
2
=
(
x
2
+
y
2
)
1
2
ϕ
=
a
r
c
t
a
n
(
y
x
)
{\displaystyle {\begin{matrix}\rho ={\sqrt {x^{2}+y^{2}}}&=&\left(x^{2}+y^{2}\right)^{\frac {1}{2}}\\\phi &=&\mathrm {arctan} ({\frac {y}{x}})\end{matrix}}}
Ableitungen der Zylinderkoordinaten nach den kartesischen Koordinaten
Bearbeiten
Leitet man die obigen Gleichungen ab, so erhält man:
∂
ρ
∂
x
=
1
2
(
x
2
+
y
2
)
−
1
2
⋅
2
x
=
x
ρ
=
cos
(
ϕ
)
{\displaystyle {\frac {\partial \rho }{\partial x}}={\frac {1}{2}}(x^{2}+y^{2})^{-{\frac {1}{2}}}\cdot 2x={\frac {x}{\rho }}=\cos(\phi )}
∂
ρ
∂
y
=
1
2
(
x
2
+
y
2
)
−
1
2
⋅
2
y
=
y
ρ
=
sin
(
ϕ
)
{\displaystyle {\frac {\partial \rho }{\partial y}}={\frac {1}{2}}(x^{2}+y^{2})^{-{\frac {1}{2}}}\cdot 2y={\frac {y}{\rho }}=\sin(\phi )}
∂
ϕ
∂
x
=
1
1
+
(
y
x
)
2
⋅
−
y
x
2
=
−
y
ρ
2
=
−
sin
(
ϕ
)
ρ
{\displaystyle {\frac {\partial \phi }{\partial x}}={\frac {1}{1+\left({\frac {y}{x}}\right)^{2}}}\cdot -{\frac {y}{x^{2}}}=-{\frac {y}{\rho ^{2}}}=-{\frac {\sin(\phi )}{\rho }}}
∂
ϕ
∂
y
=
1
1
+
(
y
x
)
2
⋅
1
x
=
x
ρ
2
=
cos
(
ϕ
)
ρ
{\displaystyle {\frac {\partial \phi }{\partial y}}={\frac {1}{1+\left({\frac {y}{x}}\right)^{2}}}\cdot {\frac {1}{x}}={\frac {x}{\rho ^{2}}}={\frac {\cos(\phi )}{\rho }}}
Ableitung einer Funktion in Zylinderkoordinaten nach kartesischen Koordinaten
Bearbeiten
Will man eine Funktion in Zylinderkoordinaten nach kartesischen Koordinaten ableiten, so muss man die (mehrdimensionale) Kettenregel berücksichtigen und erhält:
∂
∂
x
f
(
ρ
,
ϕ
,
z
)
=
∂
ρ
∂
x
∂
∂
ρ
f
(
ρ
,
ϕ
,
z
)
+
∂
ϕ
∂
x
∂
∂
ϕ
f
(
ρ
,
ϕ
,
z
)
=
(
cos
(
ϕ
)
∂
∂
ρ
−
sin
(
ϕ
)
ρ
∂
∂
ϕ
)
f
(
ρ
,
ϕ
,
z
)
{\displaystyle {\frac {\partial }{\partial x}}f(\rho ,\phi ,z)={\frac {\partial \rho }{\partial x}}{\frac {\partial }{\partial \rho }}f(\rho ,\phi ,z)+{\frac {\partial \phi }{\partial x}}{\frac {\partial }{\partial \phi }}f(\rho ,\phi ,z)=\left(\cos(\phi ){\frac {\partial }{\partial \rho }}-{\frac {\sin(\phi )}{\rho }}{\frac {\partial }{\partial \phi }}\right)f(\rho ,\phi ,z)}
∂
∂
y
f
(
ρ
,
ϕ
,
z
)
=
∂
ρ
∂
y
∂
∂
ρ
f
(
ρ
,
ϕ
,
z
)
+
∂
ϕ
∂
y
∂
∂
ϕ
f
(
ρ
,
ϕ
,
z
)
=
(
sin
(
ϕ
)
∂
∂
ρ
+
cos
(
ϕ
)
ρ
∂
∂
ϕ
)
f
(
ρ
,
ϕ
,
z
)
{\displaystyle {\frac {\partial }{\partial y}}f(\rho ,\phi ,z)={\frac {\partial \rho }{\partial y}}{\frac {\partial }{\partial \rho }}f(\rho ,\phi ,z)+{\frac {\partial \phi }{\partial y}}{\frac {\partial }{\partial \phi }}f(\rho ,\phi ,z)=\left(\sin(\phi ){\frac {\partial }{\partial \rho }}+{\frac {\cos(\phi )}{\rho }}{\frac {\partial }{\partial \phi }}\right)f(\rho ,\phi ,z)}
Ableitungen der kartesischen Koordinaten nach den Zylinderkoordinaten
Bearbeiten
∂
x
∂
ρ
=
(
cos
(
ϕ
)
sin
(
ϕ
)
0
)
∂
x
∂
ϕ
=
ρ
(
−
sin
(
ϕ
)
cos
(
ϕ
)
0
)
∂
x
∂
z
=
ρ
(
0
0
1
)
{\displaystyle {\frac {\partial \mathbf {x} }{\partial \rho }}={\begin{pmatrix}\cos(\phi )\\\sin(\phi )\\0\end{pmatrix}}\;{\frac {\partial \mathbf {x} }{\partial \phi }}=\rho {\begin{pmatrix}-\sin(\phi )\\\cos(\phi )\\0\end{pmatrix}}\;{\frac {\partial \mathbf {x} }{\partial z}}=\rho {\begin{pmatrix}0\\0\\1\end{pmatrix}}}
ρ
^
=
∂
x
∂
ρ
|
∂
x
∂
ρ
|
=
(
cos
(
ϕ
)
sin
(
ϕ
)
0
)
{\displaystyle {\boldsymbol {\hat {\rho }}}={\frac {\frac {\partial \mathbf {x} }{\partial \rho }}{\left|{\frac {\partial \mathbf {x} }{\partial \rho }}\right|}}={\begin{pmatrix}\cos(\phi )\\\sin(\phi )\\0\end{pmatrix}}}
ϕ
^
=
∂
x
∂
ϕ
|
∂
x
∂
ϕ
|
=
(
−
sin
(
ϕ
)
cos
(
ϕ
)
0
)
{\displaystyle {\boldsymbol {\hat {\phi }}}={\frac {\frac {\partial \mathbf {x} }{\partial \phi }}{\left|{\frac {\partial \mathbf {x} }{\partial \phi }}\right|}}={\begin{pmatrix}-\sin(\phi )\\\cos(\phi )\\0\end{pmatrix}}}
z
^
=
∂
x
∂
z
|
∂
x
∂
z
|
=
(
0
0
1
)
{\displaystyle {\boldsymbol {\hat {z}}}={\frac {\frac {\partial \mathbf {x} }{\partial z}}{\left|{\frac {\partial \mathbf {x} }{\partial z}}\right|}}={\begin{pmatrix}0\\0\\1\end{pmatrix}}}
∇
f
(
r
,
ϕ
,
z
)
=
(
ρ
^
∂
∂
ρ
+
ϕ
^
1
ρ
∂
∂
ϕ
+
z
^
∂
∂
z
)
f
(
r
,
ϕ
,
z
)
{\displaystyle \nabla f(r,\phi ,z)=\left({\boldsymbol {\hat {\rho }}}{\frac {\partial }{\partial \rho }}+{\boldsymbol {\hat {\phi }}}{\frac {1}{\rho }}{\frac {\partial }{\partial \phi }}+{\boldsymbol {\hat {z}}}{\frac {\partial }{\partial z}}\right)f(r,\phi ,z)}
A
:=
(
A
x
A
y
A
z
)
=
(
A
ρ
cos
(
ϕ
)
−
A
ϕ
sin
(
ϕ
)
A
ρ
sin
(
ϕ
)
+
A
ϕ
cos
(
ϕ
)
A
z
)
{\displaystyle \mathbf {A} :={\begin{pmatrix}A_{x}\\A_{y}\\A_{z}\end{pmatrix}}={\begin{pmatrix}A_{\rho }\cos(\phi )-A_{\phi }\sin(\phi )\\A_{\rho }\sin(\phi )+A_{\phi }\cos(\phi )\\A_{z}\end{pmatrix}}}
∂
∂
x
A
x
=
(
x
ρ
∂
∂
ρ
−
y
ρ
2
∂
∂
ϕ
)
(
A
ρ
cos
(
ϕ
)
−
A
ϕ
sin
(
ϕ
)
)
=
x
ρ
∂
∂
ρ
A
ρ
cos
(
ϕ
)
+
y
ρ
2
∂
∂
ϕ
A
ϕ
sin
(
ϕ
)
−
x
ρ
∂
∂
ρ
A
ϕ
sin
(
ϕ
)
−
y
ρ
2
∂
∂
ϕ
A
ρ
cos
(
ϕ
)
{\displaystyle {\frac {\partial }{\partial x}}A_{x}=\left({\frac {x}{\rho }}{\frac {\partial }{\partial \rho }}-{\frac {y}{\rho ^{2}}}{\frac {\partial }{\partial \phi }}\right)\left(A_{\rho }\cos(\phi )-A_{\phi }\sin(\phi )\right)={\frac {x}{\rho }}{\frac {\partial }{\partial \rho }}A_{\rho }\cos(\phi )+{\frac {y}{\rho ^{2}}}{\frac {\partial }{\partial \phi }}A_{\phi }\sin(\phi )-{\frac {x}{\rho }}{\frac {\partial }{\partial \rho }}A_{\phi }\sin(\phi )-{\frac {y}{\rho ^{2}}}{\frac {\partial }{\partial \phi }}A_{\rho }\cos(\phi )}
∂
∂
x
A
x
=
x
ρ
cos
(
ϕ
)
∂
A
ρ
∂
ρ
+
y
ρ
2
sin
(
ϕ
)
∂
A
ϕ
∂
ϕ
+
y
ρ
2
A
ϕ
cos
(
ϕ
)
−
x
ρ
sin
(
ϕ
)
∂
A
ϕ
∂
ρ
−
y
ρ
2
cos
(
ϕ
)
∂
A
ρ
∂
ϕ
+
y
ρ
2
A
ρ
sin
(
ϕ
)
{\displaystyle {\frac {\partial }{\partial x}}A_{x}={\frac {x}{\rho }}\cos(\phi ){\frac {\partial A_{\rho }}{\partial \rho }}+{\frac {y}{\rho ^{2}}}\sin(\phi ){\frac {\partial A_{\phi }}{\partial \phi }}+{\frac {y}{\rho ^{2}}}A_{\phi }\cos(\phi )-{\frac {x}{\rho }}\sin(\phi ){\frac {\partial A_{\phi }}{\partial \rho }}-{\frac {y}{\rho ^{2}}}\cos(\phi ){\frac {\partial A_{\rho }}{\partial \phi }}+{\frac {y}{\rho ^{2}}}A_{\rho }\sin(\phi )}
∂
∂
x
A
x
=
cos
(
ϕ
)
2
∂
A
ρ
∂
ρ
+
1
ρ
sin
(
ϕ
)
2
∂
A
ϕ
∂
ϕ
+
1
ρ
A
ϕ
cos
(
ϕ
)
sin
(
ϕ
)
−
cos
(
ϕ
)
sin
(
ϕ
)
∂
A
ϕ
∂
ρ
−
1
ρ
sin
(
ϕ
)
cos
(
ϕ
)
∂
A
ρ
∂
ϕ
+
1
ρ
A
ρ
sin
(
ϕ
)
2
{\displaystyle {\frac {\partial }{\partial x}}A_{x}=\cos(\phi )^{2}{\frac {\partial A_{\rho }}{\partial \rho }}+{\frac {1}{\rho }}\sin(\phi )^{2}{\frac {\partial A_{\phi }}{\partial \phi }}+{\frac {1}{\rho }}A_{\phi }\cos(\phi )\sin(\phi )-\cos(\phi )\sin(\phi ){\frac {\partial A_{\phi }}{\partial \rho }}-{\frac {1}{\rho }}\sin(\phi )\cos(\phi ){\frac {\partial A_{\rho }}{\partial \phi }}+{\frac {1}{\rho }}A_{\rho }\sin(\phi )^{2}}
∂
∂
y
A
y
=
(
y
ρ
∂
∂
ρ
+
x
ρ
2
∂
∂
ϕ
)
(
A
ρ
sin
(
ϕ
)
+
A
ϕ
cos
(
ϕ
)
)
=
y
ρ
∂
∂
ρ
A
ρ
sin
(
ϕ
)
+
x
ρ
2
∂
∂
ϕ
A
ϕ
cos
(
ϕ
)
+
y
ρ
∂
∂
ρ
A
ϕ
cos
(
ϕ
)
+
x
ρ
2
∂
∂
ϕ
A
ρ
sin
(
ϕ
)
{\displaystyle {\frac {\partial }{\partial y}}A_{y}=\left({\frac {y}{\rho }}{\frac {\partial }{\partial \rho }}+{\frac {x}{\rho ^{2}}}{\frac {\partial }{\partial \phi }}\right)\left(A_{\rho }\sin(\phi )+A_{\phi }\cos(\phi )\right)={\frac {y}{\rho }}{\frac {\partial }{\partial \rho }}A_{\rho }\sin(\phi )+{\frac {x}{\rho ^{2}}}{\frac {\partial }{\partial \phi }}A_{\phi }\cos(\phi )+{\frac {y}{\rho }}{\frac {\partial }{\partial \rho }}A_{\phi }\cos(\phi )+{\frac {x}{\rho ^{2}}}{\frac {\partial }{\partial \phi }}A_{\rho }\sin(\phi )}
∂
∂
y
A
y
=
y
ρ
sin
(
ϕ
)
∂
A
ρ
∂
ρ
−
x
ρ
2
A
ϕ
sin
(
ϕ
)
+
x
ρ
2
cos
(
ϕ
)
∂
A
ϕ
∂
ϕ
+
y
ρ
cos
(
ϕ
)
∂
A
ϕ
∂
ρ
+
x
ρ
2
sin
(
ϕ
)
∂
A
ρ
∂
ϕ
+
x
ρ
2
A
ρ
cos
(
ϕ
)
{\displaystyle {\frac {\partial }{\partial y}}A_{y}={\frac {y}{\rho }}\sin(\phi ){\frac {\partial A_{\rho }}{\partial \rho }}-{\frac {x}{\rho ^{2}}}A_{\phi }\sin(\phi )+{\frac {x}{\rho ^{2}}}\cos(\phi ){\frac {\partial A_{\phi }}{\partial \phi }}+{\frac {y}{\rho }}\cos(\phi ){\frac {\partial A_{\phi }}{\partial \rho }}+{\frac {x}{\rho ^{2}}}\sin(\phi ){\frac {\partial A_{\rho }}{\partial \phi }}+{\frac {x}{\rho ^{2}}}A_{\rho }\cos(\phi )}
∂
∂
y
A
y
=
sin
(
ϕ
)
2
∂
A
ρ
∂
ρ
−
1
ρ
A
ϕ
cos
(
ϕ
)
sin
(
ϕ
)
+
1
ρ
cos
(
ϕ
)
2
∂
A
ϕ
∂
ϕ
+
cos
(
ϕ
)
sin
(
ϕ
)
∂
A
ϕ
∂
ρ
+
1
ρ
cos
(
ϕ
)
sin
(
ϕ
)
∂
A
ρ
∂
ϕ
+
1
ρ
A
ρ
cos
(
ϕ
)
2
{\displaystyle {\frac {\partial }{\partial y}}A_{y}=\sin(\phi )^{2}{\frac {\partial A_{\rho }}{\partial \rho }}-{\frac {1}{\rho }}A_{\phi }\cos(\phi )\sin(\phi )+{\frac {1}{\rho }}\cos(\phi )^{2}{\frac {\partial A_{\phi }}{\partial \phi }}+\cos(\phi )\sin(\phi ){\frac {\partial A_{\phi }}{\partial \rho }}+{\frac {1}{\rho }}\cos(\phi )\sin(\phi ){\frac {\partial A_{\rho }}{\partial \phi }}+{\frac {1}{\rho }}A_{\rho }\cos(\phi )^{2}}
∂
∂
x
A
x
+
∂
∂
y
A
y
=
∂
A
ρ
∂
ρ
+
1
ρ
∂
A
ϕ
∂
ϕ
+
1
ρ
A
ρ
=
1
ρ
∂
∂
ρ
ρ
A
ρ
+
1
ρ
∂
A
ϕ
∂
ϕ
{\displaystyle {\frac {\partial }{\partial x}}A_{x}+{\frac {\partial }{\partial y}}A_{y}={\frac {\partial A_{\rho }}{\partial \rho }}+{\frac {1}{\rho }}{\frac {\partial A_{\phi }}{\partial \phi }}+{\frac {1}{\rho }}A_{\rho }={\frac {1}{\rho }}{\frac {\partial }{\partial \rho }}\rho A_{\rho }+{\frac {1}{\rho }}{\frac {\partial A_{\phi }}{\partial \phi }}}
∇
⋅
A
=
1
ρ
∂
∂
ρ
ρ
A
ρ
+
1
ρ
∂
A
ϕ
∂
ϕ
+
∂
A
z
∂
z
{\displaystyle \nabla \cdot \mathbf {A} ={\frac {1}{\rho }}{\frac {\partial }{\partial \rho }}\rho A_{\rho }+{\frac {1}{\rho }}{\frac {\partial A_{\phi }}{\partial \phi }}+{\frac {\partial A_{z}}{\partial z}}}
x
=
r
sin
(
Θ
)
cos
(
ϕ
)
y
=
r
sin
(
Θ
)
sin
(
ϕ
)
z
=
r
cos
(
Θ
)
{\displaystyle {\begin{matrix}x&=&r\sin(\Theta )\cos(\phi )\\y&=&r\sin(\Theta )\sin(\phi )\\z&=&r\cos(\Theta )\end{matrix}}}
r
=
x
2
+
y
2
+
z
2
=
(
x
2
+
y
2
+
z
2
)
1
2
ϕ
=
a
r
c
t
a
n
(
y
x
)
Θ
=
a
r
c
t
a
n
(
x
2
+
y
2
z
)
{\displaystyle {\begin{matrix}r&=&{\sqrt {x^{2}+y^{2}+z^{2}}}=\left(x^{2}+y^{2}+z^{2}\right)^{\frac {1}{2}}\\\phi &=&\mathrm {arctan} ({\frac {y}{x}})\\\Theta &=&\mathrm {arctan} ({\frac {\sqrt {x^{2}+y^{2}}}{z}})\end{matrix}}}
∂
r
∂
x
=
1
2
(
x
2
+
y
2
+
z
2
)
−
1
2
⋅
2
x
=
x
r
=
sin
(
Θ
)
cos
(
ϕ
)
{\displaystyle {\frac {\partial r}{\partial x}}={\frac {1}{2}}(x^{2}+y^{2}+z^{2})^{-{\frac {1}{2}}}\cdot 2x={\frac {x}{r}}=\sin(\Theta )\cos(\phi )}
∂
r
∂
y
=
y
r
=
sin
(
Θ
)
sin
(
ϕ
)
{\displaystyle {\frac {\partial r}{\partial y}}={\frac {y}{r}}=\sin(\Theta )\sin(\phi )}
∂
r
∂
z
=
z
r
=
cos
(
Θ
)
{\displaystyle {\frac {\partial r}{\partial z}}={\frac {z}{r}}=\cos(\Theta )}
ρ
:=
x
2
+
y
2
=
r
sin
(
Θ
)
{\displaystyle \rho :={\sqrt {x^{2}+y^{2}}}=r\sin(\Theta )}
∂
ϕ
∂
x
=
1
1
+
(
y
x
)
2
⋅
−
y
x
2
=
−
y
ρ
2
=
−
sin
(
ϕ
)
ρ
=
−
sin
(
ϕ
)
r
sin
(
Θ
)
{\displaystyle {\frac {\partial \phi }{\partial x}}={\frac {1}{1+\left({\frac {y}{x}}\right)^{2}}}\cdot -{\frac {y}{x^{2}}}=-{\frac {y}{\rho ^{2}}}=-{\frac {\sin(\phi )}{\rho }}=-{\frac {\sin(\phi )}{r\sin(\Theta )}}}
∂
ϕ
∂
y
=
1
1
+
(
y
x
)
2
⋅
1
x
=
x
ρ
2
=
cos
(
ϕ
)
ρ
=
cos
(
ϕ
)
r
sin
(
Θ
)
{\displaystyle {\frac {\partial \phi }{\partial y}}={\frac {1}{1+\left({\frac {y}{x}}\right)^{2}}}\cdot {\frac {1}{x}}={\frac {x}{\rho ^{2}}}={\frac {\cos(\phi )}{\rho }}={\frac {\cos(\phi )}{r\sin(\Theta )}}}
∂
ϕ
∂
z
=
0
{\displaystyle {\frac {\partial \phi }{\partial z}}=0}
∂
Θ
∂
x
=
1
1
+
x
2
+
y
2
z
2
⋅
2
x
2
z
x
2
+
y
2
=
z
r
2
⋅
cos
(
ϕ
)
=
1
r
⋅
cos
(
Θ
)
cos
(
ϕ
)
{\displaystyle {\frac {\partial \Theta }{\partial x}}={\frac {1}{1+{\frac {x^{2}+y^{2}}{z^{2}}}}}\cdot {\frac {2x}{2z{\sqrt {x^{2}+y^{2}}}}}={\frac {z}{r^{2}}}\cdot \cos(\phi )={\frac {1}{r}}\cdot \cos(\Theta )\cos(\phi )}
∂
Θ
∂
y
=
1
1
+
x
2
+
y
2
z
2
⋅
2
y
2
z
x
2
+
y
2
=
z
r
2
⋅
sin
(
ϕ
)
=
1
r
⋅
cos
(
Θ
)
sin
(
ϕ
)
{\displaystyle {\frac {\partial \Theta }{\partial y}}={\frac {1}{1+{\frac {x^{2}+y^{2}}{z^{2}}}}}\cdot {\frac {2y}{2z{\sqrt {x^{2}+y^{2}}}}}={\frac {z}{r^{2}}}\cdot \sin(\phi )={\frac {1}{r}}\cdot \cos(\Theta )\sin(\phi )}
∂
Θ
∂
z
=
1
1
+
x
2
+
y
2
z
2
⋅
−
x
2
+
y
2
z
2
=
−
ρ
r
2
=
−
sin
(
Θ
)
r
{\displaystyle {\frac {\partial \Theta }{\partial z}}={\frac {1}{1+{\frac {x^{2}+y^{2}}{z^{2}}}}}\cdot {\frac {-{\sqrt {x^{2}+y^{2}}}}{z^{2}}}=-{\frac {\rho }{r^{2}}}=-{\frac {\sin(\Theta )}{r}}}
∂
x
∂
r
=
(
sin
(
Θ
)
cos
(
ϕ
)
sin
(
Θ
)
sin
(
ϕ
)
cos
(
Θ
)
)
{\displaystyle {\frac {\partial \mathbf {x} }{\partial r}}={\begin{pmatrix}\sin(\Theta )\cos(\phi )\\\sin(\Theta )\sin(\phi )\\\cos(\Theta )\end{pmatrix}}}
∂
x
∂
ϕ
=
(
−
r
sin
(
Θ
)
sin
(
ϕ
)
r
sin
(
Θ
)
cos
(
ϕ
)
0
)
{\displaystyle {\frac {\partial \mathbf {x} }{\partial \phi }}={\begin{pmatrix}-r\sin(\Theta )\sin(\phi )\\r\sin(\Theta )\cos(\phi )\\0\end{pmatrix}}}
∂
x
∂
Θ
=
(
r
cos
(
Θ
)
cos
(
ϕ
)
r
cos
(
Θ
)
sin
(
ϕ
)
−
r
sin
(
Θ
)
)
{\displaystyle {\frac {\partial \mathbf {x} }{\partial \Theta }}={\begin{pmatrix}r\cos(\Theta )\cos(\phi )\\r\cos(\Theta )\sin(\phi )\\-r\sin(\Theta )\end{pmatrix}}}
r
^
=
∂
x
∂
r
|
∂
x
∂
r
|
=
(
sin
(
Θ
)
cos
(
ϕ
)
sin
(
Θ
)
sin
(
ϕ
)
cos
(
Θ
)
)
{\displaystyle {\boldsymbol {\hat {r}}}={\frac {\frac {\partial \mathbf {x} }{\partial r}}{|{\frac {\partial \mathbf {x} }{\partial r}}|}}={\begin{pmatrix}\sin(\Theta )\cos(\phi )\\\sin(\Theta )\sin(\phi )\\\cos(\Theta )\end{pmatrix}}}
ϕ
^
=
∂
x
∂
ϕ
|
∂
x
∂
ϕ
|
=
(
−
sin
(
ϕ
)
cos
(
ϕ
)
0
)
{\displaystyle {\boldsymbol {\hat {\phi }}}={\frac {\frac {\partial \mathbf {x} }{\partial \phi }}{|{\frac {\partial \mathbf {x} }{\partial \phi }}|}}={\begin{pmatrix}-\sin(\phi )\\\cos(\phi )\\0\end{pmatrix}}}
Θ
^
=
∂
x
∂
Θ
|
∂
x
∂
Θ
|
=
(
cos
(
Θ
)
cos
(
ϕ
)
cos
(
Θ
)
sin
(
ϕ
)
−
sin
(
Θ
)
)
{\displaystyle {\boldsymbol {\hat {\Theta }}}={\frac {\frac {\partial \mathbf {x} }{\partial \Theta }}{|{\frac {\partial \mathbf {x} }{\partial \Theta }}|}}={\begin{pmatrix}\cos(\Theta )\cos(\phi )\\\cos(\Theta )\sin(\phi )\\-\sin(\Theta )\end{pmatrix}}}
∂
∂
x
f
(
r
,
Θ
,
ϕ
)
=
(
∂
r
∂
x
∂
∂
r
+
∂
ϕ
∂
x
∂
∂
ϕ
+
∂
Θ
∂
x
∂
∂
Θ
)
f
(
r
,
Θ
,
ϕ
)
=
(
sin
(
Θ
)
cos
(
ϕ
)
∂
∂
r
−
sin
(
ϕ
)
r
sin
(
Θ
)
∂
∂
ϕ
+
1
r
⋅
cos
(
Θ
)
cos
(
ϕ
)
∂
∂
Θ
)
f
(
r
,
Θ
,
ϕ
)
{\displaystyle {\frac {\partial }{\partial x}}f(r,\Theta ,\phi )=\left({\frac {\partial r}{\partial x}}{\frac {\partial }{\partial r}}+{\frac {\partial \phi }{\partial x}}{\frac {\partial }{\partial \phi }}+{\frac {\partial \Theta }{\partial x}}{\frac {\partial }{\partial \Theta }}\right)f(r,\Theta ,\phi )=\left(\sin(\Theta )\cos(\phi ){\frac {\partial }{\partial r}}-{\frac {\sin(\phi )}{r\sin(\Theta )}}{\frac {\partial }{\partial \phi }}+{\frac {1}{r}}\cdot \cos(\Theta )\cos(\phi ){\frac {\partial }{\partial \Theta }}\right)f(r,\Theta ,\phi )}
∂
∂
y
f
(
r
,
Θ
,
ϕ
)
=
(
∂
r
∂
y
∂
∂
r
+
∂
ϕ
∂
y
∂
∂
ϕ
+
∂
Θ
∂
y
∂
∂
Θ
)
f
(
r
,
Θ
,
ϕ
)
=
(
sin
(
Θ
)
sin
(
ϕ
)
∂
∂
r
+
cos
(
ϕ
)
r
sin
(
Θ
)
∂
∂
ϕ
+
1
r
⋅
cos
(
Θ
)
sin
(
ϕ
)
∂
∂
Θ
)
f
(
r
,
Θ
,
ϕ
)
{\displaystyle {\frac {\partial }{\partial y}}f(r,\Theta ,\phi )=\left({\frac {\partial r}{\partial y}}{\frac {\partial }{\partial r}}+{\frac {\partial \phi }{\partial y}}{\frac {\partial }{\partial \phi }}+{\frac {\partial \Theta }{\partial y}}{\frac {\partial }{\partial \Theta }}\right)f(r,\Theta ,\phi )=\left(\sin(\Theta )\sin(\phi ){\frac {\partial }{\partial r}}+{\frac {\cos(\phi )}{r\sin(\Theta )}}{\frac {\partial }{\partial \phi }}+{\frac {1}{r}}\cdot \cos(\Theta )\sin(\phi ){\frac {\partial }{\partial \Theta }}\right)f(r,\Theta ,\phi )}
∂
∂
z
f
(
r
,
Θ
,
ϕ
)
=
(
∂
r
∂
z
∂
∂
r
+
∂
ϕ
∂
z
∂
∂
ϕ
+
∂
Θ
∂
z
∂
∂
Θ
)
f
(
r
,
Θ
,
ϕ
)
=
(
cos
(
Θ
)
∂
∂
r
−
1
r
⋅
sin
(
Θ
)
∂
∂
Θ
)
f
(
r
,
Θ
,
ϕ
)
{\displaystyle {\frac {\partial }{\partial z}}f(r,\Theta ,\phi )=\left({\frac {\partial r}{\partial z}}{\frac {\partial }{\partial r}}+{\frac {\partial \phi }{\partial z}}{\frac {\partial }{\partial \phi }}+{\frac {\partial \Theta }{\partial z}}{\frac {\partial }{\partial \Theta }}\right)f(r,\Theta ,\phi )=\left(\cos(\Theta ){\frac {\partial }{\partial r}}-{\frac {1}{r}}\cdot \sin(\Theta ){\frac {\partial }{\partial \Theta }}\right)f(r,\Theta ,\phi )}
∇
f
(
r
,
Θ
,
ϕ
)
=
r
^
∂
∂
r
+
1
r
sin
(
Θ
)
ϕ
^
∂
∂
ϕ
+
1
r
Θ
^
∂
∂
Θ
{\displaystyle \nabla f(r,\Theta ,\phi )={\boldsymbol {\hat {r}}}{\frac {\partial }{\partial r}}+{\frac {1}{r\sin(\Theta )}}{\boldsymbol {\hat {\phi }}}{\frac {\partial }{\partial \phi }}+{\frac {1}{r}}{\boldsymbol {\hat {\Theta }}}{\frac {\partial }{\partial \Theta }}}
A
(
r
,
Θ
,
ϕ
)
=
(
A
x
A
y
A
z
)
=
A
r
r
^
+
A
Θ
Θ
^
+
A
ϕ
ϕ
^
=
(
A
r
sin
(
Θ
)
cos
(
ϕ
)
+
A
Θ
cos
(
Θ
)
cos
(
ϕ
)
−
A
ϕ
sin
(
ϕ
)
A
r
sin
(
Θ
)
sin
(
ϕ
)
+
A
Θ
cos
(
Θ
)
sin
(
ϕ
)
+
A
ϕ
cos
(
ϕ
)
A
r
cos
(
Θ
)
−
A
Θ
sin
(
Θ
)
)
{\displaystyle \mathbf {A} (r,\Theta ,\phi )={\begin{pmatrix}A_{x}\\A_{y}\\A_{z}\end{pmatrix}}=A_{r}{\boldsymbol {\hat {r}}}+A_{\Theta }{\boldsymbol {\hat {\Theta }}}+A_{\phi }{\boldsymbol {\hat {\phi }}}={\begin{pmatrix}A_{r}\sin(\Theta )\cos(\phi )+A_{\Theta }\cos(\Theta )\cos(\phi )-A_{\phi }\sin(\phi )\\A_{r}\sin(\Theta )\sin(\phi )+A_{\Theta }\cos(\Theta )\sin(\phi )+A_{\phi }\cos(\phi )\\A_{r}\cos(\Theta )-A_{\Theta }\sin(\Theta )\end{pmatrix}}}
∂
A
x
∂
x
=
(
sin
(
Θ
)
cos
(
ϕ
)
∂
∂
r
−
sin
(
ϕ
)
r
sin
(
Θ
)
∂
∂
ϕ
+
1
r
⋅
cos
(
Θ
)
cos
(
ϕ
)
∂
∂
Θ
)
(
A
r
sin
(
Θ
)
cos
(
ϕ
)
+
A
Θ
cos
(
Θ
)
cos
(
ϕ
)
−
A
ϕ
sin
(
ϕ
)
)
=
sin
2
(
Θ
)
cos
2
(
ϕ
)
∂
A
r
∂
r
+
sin
(
Θ
)
cos
(
Θ
)
cos
2
(
ϕ
)
∂
A
Θ
∂
r
−
sin
(
Θ
)
cos
(
ϕ
)
sin
(
ϕ
)
∂
A
ϕ
∂
r
−
sin
(
ϕ
)
cos
(
ϕ
)
r
∂
A
r
∂
ϕ
+
A
r
sin
2
(
ϕ
)
r
−
sin
(
ϕ
)
cos
(
ϕ
)
cos
(
Θ
)
r
sin
(
Θ
)
∂
A
Θ
∂
ϕ
+
A
Θ
sin
2
(
ϕ
)
cos
(
Θ
)
r
sin
(
Θ
)
+
sin
2
(
ϕ
)
r
sin
(
Θ
)
∂
A
ϕ
∂
ϕ
+
A
ϕ
sin
(
ϕ
)
cos
(
ϕ
)
r
sin
(
Θ
)
+
1
r
cos
(
Θ
)
sin
(
Θ
)
cos
2
(
ϕ
)
∂
A
r
∂
Θ
+
1
r
A
r
cos
2
(
Θ
)
cos
2
(
ϕ
)
+
1
r
cos
2
(
Θ
)
cos
2
(
ϕ
)
∂
A
Θ
∂
Θ
−
1
r
A
Θ
cos
(
Θ
)
sin
(
Θ
)
cos
2
(
ϕ
)
−
1
r
cos
(
Θ
)
cos
(
ϕ
)
sin
(
ϕ
)
∂
A
ϕ
∂
Θ
{\displaystyle {\begin{matrix}{\frac {\partial A_{x}}{\partial x}}&=&\left(\sin(\Theta )\cos(\phi ){\frac {\partial }{\partial r}}-{\frac {\sin(\phi )}{r\sin(\Theta )}}{\frac {\partial }{\partial \phi }}+{\frac {1}{r}}\cdot \cos(\Theta )\cos(\phi ){\frac {\partial }{\partial \Theta }}\right)\left(A_{r}\sin(\Theta )\cos(\phi )+A_{\Theta }\cos(\Theta )\cos(\phi )-A_{\phi }\sin(\phi )\right)\\&=&\sin ^{2}(\Theta )\cos ^{2}(\phi ){\frac {\partial A_{r}}{\partial r}}+\sin(\Theta )\cos(\Theta )\cos ^{2}(\phi ){\frac {\partial A_{\Theta }}{\partial r}}-\sin(\Theta )\cos(\phi )\sin(\phi ){\frac {\partial A_{\phi }}{\partial r}}\\&&-{\frac {\sin(\phi )\cos(\phi )}{r}}{\frac {\partial A_{r}}{\partial \phi }}+A_{r}{\frac {\sin ^{2}(\phi )}{r}}-{\frac {\sin(\phi )\cos(\phi )\cos(\Theta )}{r\sin(\Theta )}}{\frac {\partial A_{\Theta }}{\partial \phi }}+A_{\Theta }{\frac {\sin ^{2}(\phi )\cos(\Theta )}{r\sin(\Theta )}}+{\frac {\sin ^{2}(\phi )}{r\sin(\Theta )}}{\frac {\partial A_{\phi }}{\partial \phi }}+A_{\phi }{\frac {\sin(\phi )\cos(\phi )}{r\sin(\Theta )}}\\&&+{\frac {1}{r}}\cos(\Theta )\sin(\Theta )\cos ^{2}(\phi ){\frac {\partial A_{r}}{\partial \Theta }}+{\frac {1}{r}}A_{r}\cos ^{2}(\Theta )\cos ^{2}(\phi )\\&&+{\frac {1}{r}}\cos ^{2}(\Theta )\cos ^{2}(\phi ){\frac {\partial A_{\Theta }}{\partial \Theta }}-{\frac {1}{r}}A_{\Theta }\cos(\Theta )\sin(\Theta )\cos ^{2}(\phi )-{\frac {1}{r}}\cos(\Theta )\cos(\phi )\sin(\phi ){\frac {\partial A_{\phi }}{\partial \Theta }}\end{matrix}}}
∂
A
y
∂
y
=
(
sin
(
Θ
)
sin
(
ϕ
)
∂
∂
r
+
cos
(
ϕ
)
r
sin
(
Θ
)
∂
∂
ϕ
+
1
r
⋅
cos
(
Θ
)
sin
(
ϕ
)
∂
∂
Θ
)
(
A
r
sin
(
Θ
)
sin
(
ϕ
)
+
A
Θ
cos
(
Θ
)
sin
(
ϕ
)
+
A
ϕ
cos
(
ϕ
)
)
=
sin
2
(
Θ
)
sin
2
(
ϕ
)
∂
A
r
∂
r
+
sin
(
Θ
)
cos
(
Θ
)
sin
2
(
ϕ
)
∂
A
Θ
∂
r
+
sin
(
Θ
)
cos
(
ϕ
)
sin
(
ϕ
)
∂
A
ϕ
∂
r
+
sin
(
ϕ
)
cos
(
ϕ
)
r
∂
A
r
∂
ϕ
+
A
r
cos
2
(
ϕ
)
r
+
sin
(
ϕ
)
cos
(
ϕ
)
cos
(
Θ
)
r
sin
(
Θ
)
∂
A
Θ
∂
ϕ
+
A
Θ
cos
2
(
ϕ
)
cos
(
Θ
)
r
sin
(
Θ
)
+
cos
2
(
ϕ
)
r
sin
(
Θ
)
∂
A
ϕ
∂
ϕ
−
A
ϕ
sin
(
ϕ
)
cos
(
ϕ
)
r
sin
(
Θ
)
+
1
r
cos
(
Θ
)
sin
(
Θ
)
sin
2
(
ϕ
)
∂
A
r
∂
Θ
+
1
r
A
r
cos
2
(
Θ
)
sin
2
(
ϕ
)
+
1
r
cos
2
(
Θ
)
sin
2
(
ϕ
)
∂
A
Θ
∂
Θ
−
1
r
A
Θ
cos
(
Θ
)
sin
(
Θ
)
sin
2
(
ϕ
)
+
1
r
cos
(
Θ
)
sin
(
ϕ
)
cos
(
ϕ
)
∂
A
ϕ
∂
Θ
{\displaystyle {\begin{matrix}{\frac {\partial A_{y}}{\partial y}}&=&\left(\sin(\Theta )\sin(\phi ){\frac {\partial }{\partial r}}+{\frac {\cos(\phi )}{r\sin(\Theta )}}{\frac {\partial }{\partial \phi }}+{\frac {1}{r}}\cdot \cos(\Theta )\sin(\phi ){\frac {\partial }{\partial \Theta }}\right)\left(A_{r}\sin(\Theta )\sin(\phi )+A_{\Theta }\cos(\Theta )\sin(\phi )+A_{\phi }\cos(\phi )\right)\\&=&\sin ^{2}(\Theta )\sin ^{2}(\phi ){\frac {\partial A_{r}}{\partial r}}+\sin(\Theta )\cos(\Theta )\sin ^{2}(\phi ){\frac {\partial A_{\Theta }}{\partial r}}+\sin(\Theta )\cos(\phi )\sin(\phi ){\frac {\partial A_{\phi }}{\partial r}}\\&&+{\frac {\sin(\phi )\cos(\phi )}{r}}{\frac {\partial A_{r}}{\partial \phi }}+A_{r}{\frac {\cos ^{2}(\phi )}{r}}+{\frac {\sin(\phi )\cos(\phi )\cos(\Theta )}{r\sin(\Theta )}}{\frac {\partial A_{\Theta }}{\partial \phi }}+A_{\Theta }{\frac {\cos ^{2}(\phi )\cos(\Theta )}{r\sin(\Theta )}}+{\frac {\cos ^{2}(\phi )}{r\sin(\Theta )}}{\frac {\partial A_{\phi }}{\partial \phi }}-A_{\phi }{\frac {\sin(\phi )\cos(\phi )}{r\sin(\Theta )}}\\&&+{\frac {1}{r}}\cos(\Theta )\sin(\Theta )\sin ^{2}(\phi ){\frac {\partial A_{r}}{\partial \Theta }}+{\frac {1}{r}}A_{r}\cos ^{2}(\Theta )\sin ^{2}(\phi )\\&&+{\frac {1}{r}}\cos ^{2}(\Theta )\sin ^{2}(\phi ){\frac {\partial A_{\Theta }}{\partial \Theta }}-{\frac {1}{r}}A_{\Theta }\cos(\Theta )\sin(\Theta )\sin ^{2}(\phi )+{\frac {1}{r}}\cos(\Theta )\sin(\phi )\cos(\phi ){\frac {\partial A_{\phi }}{\partial \Theta }}\end{matrix}}}
∂
A
x
∂
x
+
∂
A
y
∂
y
=
sin
2
(
Θ
)
∂
A
r
∂
r
+
sin
(
Θ
)
cos
(
Θ
)
∂
A
Θ
∂
r
+
A
r
r
+
A
Θ
cos
(
Θ
)
r
sin
(
Θ
)
+
1
r
sin
(
Θ
)
∂
A
ϕ
∂
ϕ
+
1
r
sin
(
Θ
)
cos
(
Θ
)
∂
A
r
∂
Θ
+
1
r
cos
2
(
Θ
)
A
r
+
1
r
cos
2
(
Θ
)
∂
A
Θ
∂
Θ
−
1
r
sin
(
Θ
)
cos
(
Θ
)
A
Θ
{\displaystyle {\begin{matrix}{\frac {\partial A_{x}}{\partial x}}+{\frac {\partial A_{y}}{\partial y}}&=&\sin ^{2}(\Theta ){\frac {\partial A_{r}}{\partial r}}+\sin(\Theta )\cos(\Theta ){\frac {\partial A_{\Theta }}{\partial r}}+{\frac {A_{r}}{r}}+{\frac {A_{\Theta }\cos(\Theta )}{r\sin(\Theta )}}+{\frac {1}{r\sin(\Theta )}}{\frac {\partial A_{\phi }}{\partial \phi }}\\&&+{\frac {1}{r}}\sin(\Theta )\cos(\Theta ){\frac {\partial A_{r}}{\partial \Theta }}+{\frac {1}{r}}\cos ^{2}(\Theta )A_{r}+{\frac {1}{r}}\cos ^{2}(\Theta ){\frac {\partial A_{\Theta }}{\partial \Theta }}-{\frac {1}{r}}\sin(\Theta )\cos(\Theta )A_{\Theta }\end{matrix}}}
∂
A
z
∂
z
=
(
cos
(
Θ
)
∂
∂
r
−
1
r
⋅
sin
(
Θ
)
∂
∂
Θ
)
(
A
r
cos
(
Θ
)
−
A
Θ
sin
(
Θ
)
)
=
cos
2
Θ
∂
A
r
∂
r
−
sin
(
Θ
)
cos
(
Θ
)
∂
A
Θ
∂
r
−
1
r
sin
(
Θ
)
cos
(
Θ
)
∂
A
r
∂
Θ
+
1
r
A
r
sin
2
(
Θ
)
+
1
r
A
Θ
sin
(
Θ
)
cos
(
Θ
)
+
1
r
sin
2
(
Θ
)
∂
A
Θ
∂
Θ
{\displaystyle {\begin{matrix}{\frac {\partial A_{z}}{\partial z}}&=&\left(\cos(\Theta ){\frac {\partial }{\partial r}}-{\frac {1}{r}}\cdot \sin(\Theta ){\frac {\partial }{\partial \Theta }}\right)\left(A_{r}\cos(\Theta )-A_{\Theta }\sin(\Theta )\right)\\&=&\cos ^{2}{\Theta }{\frac {\partial A_{r}}{\partial r}}-\sin(\Theta )\cos(\Theta ){\frac {\partial A_{\Theta }}{\partial r}}-{\frac {1}{r}}\sin(\Theta )\cos(\Theta ){\frac {\partial A_{r}}{\partial \Theta }}+{\frac {1}{r}}A_{r}\sin ^{2}(\Theta )+{\frac {1}{r}}A_{\Theta }\sin(\Theta )\cos(\Theta )+{\frac {1}{r}}\sin ^{2}(\Theta ){\frac {\partial A_{\Theta }}{\partial \Theta }}\end{matrix}}}
∇
⋅
A
=
∂
A
r
∂
r
+
A
r
r
+
A
Θ
cos
(
Θ
)
r
sin
(
Θ
)
+
1
r
sin
(
Θ
)
∂
A
ϕ
∂
ϕ
+
A
r
r
+
1
r
∂
A
Θ
∂
Θ
=
1
r
2
∂
r
2
A
r
∂
r
+
1
r
sin
(
Θ
)
∂
∂
Θ
A
Θ
sin
(
Θ
)
+
1
r
sin
(
Θ
)
∂
A
ϕ
∂
ϕ
{\displaystyle \nabla \cdot \mathbf {A} ={\frac {\partial A_{r}}{\partial r}}+{\frac {A_{r}}{r}}+{\frac {A_{\Theta }\cos(\Theta )}{r\sin(\Theta )}}+{\frac {1}{r\sin(\Theta )}}{\frac {\partial A_{\phi }}{\partial \phi }}+{\frac {A_{r}}{r}}+{\frac {1}{r}}{\frac {\partial A_{\Theta }}{\partial \Theta }}={\frac {1}{r^{2}}}{\frac {\partial r^{2}A_{r}}{\partial r}}+{\frac {1}{r\sin(\Theta )}}{\frac {\partial }{\partial \Theta }}A_{\Theta }\sin(\Theta )+{\frac {1}{r\sin(\Theta )}}{\frac {\partial A_{\phi }}{\partial \phi }}}
Δ
f
(
r
,
Θ
,
ϕ
)
=
∇
⋅
(
∇
f
(
r
,
Θ
,
ϕ
)
)
=
∇
⋅
(
r
^
∂
∂
r
+
1
r
sin
(
Θ
)
ϕ
^
∂
∂
ϕ
+
1
r
Θ
^
∂
∂
Θ
)
f
(
r
,
Θ
,
ϕ
)
{\displaystyle \Delta f(r,\Theta ,\phi )=\nabla \cdot (\nabla f(r,\Theta ,\phi ))=\nabla \cdot \left({\boldsymbol {\hat {r}}}{\frac {\partial }{\partial r}}+{\frac {1}{r\sin(\Theta )}}{\boldsymbol {\hat {\phi }}}{\frac {\partial }{\partial \phi }}+{\frac {1}{r}}{\boldsymbol {\hat {\Theta }}}{\frac {\partial }{\partial \Theta }}\right)f(r,\Theta ,\phi )}
Δ
f
(
r
,
Θ
,
ϕ
)
=
(
1
r
2
∂
∂
r
r
2
∂
∂
r
+
1
r
2
sin
(
Θ
)
∂
∂
Θ
sin
(
Θ
)
∂
∂
Θ
+
1
r
2
sin
(
Θ
)
2
∂
2
∂
ϕ
2
)
f
(
r
,
Θ
,
ϕ
)
{\displaystyle \Delta f(r,\Theta ,\phi )=\left({\frac {1}{r^{2}}}{\frac {\partial }{\partial r}}r^{2}{\frac {\partial }{\partial r}}+{\frac {1}{r^{2}\sin(\Theta )}}{\frac {\partial }{\partial \Theta }}\sin(\Theta ){\frac {\partial }{\partial \Theta }}+{\frac {1}{r^{2}\sin(\Theta )^{2}}}{\frac {\partial ^{2}}{\partial \phi ^{2}}}\right)f(r,\Theta ,\phi )}