Anorganische Chemie für Schüler/ Druckversion

Druckversion des Buches Anorganische Chemie für Schüler
  • Dieses Buch umfasst derzeit etwa 172 DIN-A4-Seiten einschließlich Bilder (Stand: 9. Oktober 2012).
  • Wenn Sie dieses Buch drucken oder die Druckvorschau Ihres Browsers verwenden, ist diese Notiz nicht sichtbar.
  • Zum Drucken klicken Sie in der linken Menüleiste im Abschnitt „Drucken/exportieren“ auf Als PDF herunterladen.
  • Mehr Informationen über Druckversionen siehe Hilfe:Fertigstellen/ PDF-Versionen.
  • Hinweise:
    • Für einen reinen Text-Ausdruck kann man die Bilder-Darstellung im Browser deaktivieren:
      • Internet-Explorer: Extras > Internetoptionen > Erweitert > Bilder anzeigen (Häkchen entfernen und mit OK bestätigen)
      • Mozilla Firefox: Extras > Einstellungen > Inhalt > Grafiken laden (Häkchen entfernen und mit OK bestätigen)
      • Opera: Ansicht > Bilder > Keine Bilder
    • Texte, die in Klappboxen stehen, werden nicht immer ausgedruckt (abhängig von der Definition). Auf jeden Fall müssen sie ausgeklappt sein, wenn sie gedruckt werden sollen.
    • Die Funktion „Als PDF herunterladen“ kann zu Darstellungsfehlern führen.

Dieser Text ist sowohl unter der „Creative Commons Attribution/Share-Alike“-Lizenz 3.0 als auch GFDL lizenziert.

Eine deutschsprachige Beschreibung für Autoren und Weiternutzer findet man in den Nutzungsbedingungen der Wikimedia Foundation.


Anorganische Chemie für Schüler


C. Ziegler und H. Hoffmeister
Wikibooks


Erste Grundlagen

Bearbeiten

Was ist Chemie? - Eine Experimentalwissenschaft

Bearbeiten
Der Chemie-Nobelpreisträger  Linus Pauling (1954) soll einmal gesagt haben:
Linus Pauling
„Chemie ist die Wissenschaft von den Stoffen, von ihren Eigenschaften und den Umwandlungen, durch die neue Stoffe entstehen.“
Quelle: unbekannt

Betrachtet man zum Beispiel verschiedene Gegenstände, wie Kunststoffbecher, Arzneimittel, Glas, Metalllöffel, Gebäck, Papier, so kommt man schnell zu dem Schluss, dass es Tausende verschiedener Werkstoffe geben muss.

Dabei muss man aber aufpassen, dass man nicht die Eigenschaften der Stoffe betrachtet, die sie nur aufgrund einer bestimmten Form haben: aus Eisen gibt es das scharfe Messer, die elastische Feder, den spitzen Nagel.

Aber was hat das alles mit Chemie zu tun? Das folgende Schema zeigt eine Übersicht über die Bedeutung der Chemie im Alltag.

Mindmap Was ist Chemie?
Mindmap Was ist Chemie?
Chemie beschäftigt sich mit den Eigenschaften aller Stoffe und den Möglichkeiten sie umzuwandeln. Eisen rostet, Gestein verwittert, Holz verrottet, Papier brennt usw.

Zum Verständnis dieser Vorgänge, auch um sie nutzen zu können, führt man Experimente durch.

→ Stoffe vergehen - andere Stoffe entstehen.
→ dazu muss die Chemie Experimente durchführen.

Vorgehensweise beim Experimentieren

Bearbeiten

Zu Beginn geht man von einer Fragestellung aus, anschließend entwickelt man dazu ein Experiment, um die Frage richtig beantworten zu können. Dann musst Du die Beobachtung, die Du während des Experimentes gemacht hast, aufschreiben und untersuchen, was die Gründe für Deine Beobachtungen sein könnten. Später leitest Du für das Gesehene eine logische Schlussfolgerung ab, welche im besten Fall einen allgemeinen Sachverhalt erklärt oder beschreibt.

Danach stellst Du Dir eventuell zu der vorausgegangenen Fragestellung eine neue, genauere Frage, die Du mit Hilfe eines Experimentes beantworten möchtest, um genauere Werte zu erhalten.

Kurz: Fragestellung/Problemstellung → Experiment → Beobachtung → Schlussfolgerung (→ neue Frage / genauere Frage)

Laborordnung

Bearbeiten
  1. Schüler dürfen den ................. nur in Begleitung des Fachlehrers betreten.
  2. Mäntel, Jacken und Kleider dürfen nicht auf dem ....................... liegen Brandgefahr"
  3. Kleidung mit weiten Ärmeln, Halstücher und Schals sowie lange Haare sind ......................, vor allem wenn eine .......................... in der Nähe ist.
  4. Gasgeruch sowie Beschädigungen an Gas- oder elektrischen Steckdosen sowie an Geräten oder anderen Gefahrstellen sind dem Lehrer sofort zu melden.
  5. Das Experiment wird vom Lehrer erst .................. , dabei wird zugehört, dann fragt der Lehrer, ob es noch Fragen gibt, erst danach darf man Aufstehen und mit dem Experimentieren anfangen.
  6. Die Experimentieranleitungen stets genau beachten. Sie dienen Deiner ........................ . Wenn ein Schüler nicht zuhört, kann er aus ..................................... nicht am Experiment teilnehmen
  7. Zu Beginn des Experimentes kontrollieren alle Schüler, ob die .............................. verschlossen sind.
  8. Bei allen Versuchen wird die ........................... getragen.
  9. Während des Experimentes und auch danach wird am .............. geblieben und aufgepasst. Umherlaufende Schüler stören die anderen und den Lehrer. Außerdem blockieren sie die ...............................
  10. ................................und das Essen im Chemieraum sind zu Deinem Schutz verboten
  11. Halte niemals Dein ...................... über die Öffnung von Gefäßen!
  12. Halte die Öffnung von ................................... stets fern von Mitschülern
  13. Wische alle Flüssigkeitsreste gut und gewissenhaft ab!
  14. Niemals Chemikalien mischen, ohne vorher den Lehrer zu fragen. Es können unvorhergesehene ............................ stattfinden große Gefahr!
  15. Gieße Flüssigkeiten so aus den Flaschen, dass keine Tropfen am Gefäß herunter laufen (.........................)
  16. Nach Versuchsende wird in der Regel erst ........................und ......................... (Reagenzgläser mit der Bürste!). Das heißt nicht, dass die Stunde beendet ist. Danach wird immer der Versuch ausgewertet.
  17. Chemikalienreste werden nur nach den Anweisungen des Lehrers ...................
  18. Damit alle Freude an den Experimenten haben, reinige alle von Dir benutzten ........................... gründlich
  19. Nicht alle Flüssigkeiten dürfen im ........................... entsorgt werden. Das gilt besonders für Säuren! Sie schädigen die Rohre. Auch feste Abfälle gehören nicht in das Waschbecken, hierfür ist der .................. da!
  20. Am Ende der Stunde werden die ............................ vom Lehrer "abgenommen", dann wird aufgestuhlt und erst dann ist die Stunde beendet.
  21. Bei Unfällen das "Notaus" betätigen, den Raum verlassen und im Sekretariat nachfragen, was zu tun ist. Bei Bedarf, erste Hilfe leisten. Bei Feuer die vorgeschriebenen ................................ benutzen.

FÜHRE NICHT SELBSTSTÄNDIG VERSUCHE MIT GEFÄHRLICHEN STOFFEN DURCH!!!
DU KÖNNTEST DEN KURZEN KNALL EIN LEBEN LANG BEREUEN.

Laborordnung (Lösungsblatt)

Bearbeiten
  1. Schüler dürfen den Chemie-Fachraum nur in Begleitung des Fachlehrers betreten.
  2. Mäntel, Jacken und Kleider dürfen nicht auf dem Tisch liegen Brandgefahr!
  3. Kleidung mit weiten Ärmeln, Halstücher und Schals sowie lange Haare sind gefährlich, vor allem wenn eine Flamme in der Nähe ist.
  4. Gasgeruch sowie Beschädigungen an Gas- oder elektrischen Steckdosen sowie an Geräten oder anderen Gefahrstellen sind dem Lehrer sofort zu melden.
  5. Das Experiment wird vom Lehrer erst erklärt, dabei wird zugehört, dann fragt der Lehrer, ob es noch Fragen gibt, erst dann darf man Aufstehen und mit dem Experimentieren anfangen.
  6. Die Experimentieranleitungen stets genau beachten. Sie dienen Deiner Sicherheit. Wenn ein Schüler nicht zuhört, kann er aus Sicherheitsgründen nicht am Experiment teilnehmen
  7. Zu Beginn des Experimentes kontrollieren alle Schüler, ob die Gashähne verschlossen sind.
  8. Bei allen Versuchen wird die Schutzbrille getragen.
  9. Während des Experimentes und auch danach wird am Tisch geblieben und aufgepasst. Umherlaufende Schüler stören die anderen und den Lehrer. Außerdem blockieren sie die Fluchtwege.
  10. Geschmacksproben und das Essen im Chemieraum sind zu Deinem Schutz verboten.
  11. Halte niemals Dein Gesicht über die Öffnung von Gefäßen!
  12. Halte die Öffnung von Reagenzgläsern stets fern von Mitschülern.
  13. Wische alle Flüssigkeitsreste gut und gewissenhaft ab!
  14. Niemals Chemikalien mischen, ohne vorher den Lehrer zu fragen. Es können unvorhergesehene Reaktionen stattfinden große Gefahr!
  15. Gieße Flüssigkeiten so aus den Flaschen, dass keine Tropfen am Gefäß herunter laufen (Barkeeperdreh)
  16. Nach Versuchsende wird in der Regel erst aufgeräumt und abgewaschen (Reagenzgläser mit der Bürste!). Das heißt nicht, dass die Stunde beendet ist. Danach wird immer der Versuch ausgewertet.
  17. Chemikalienreste werden nur nach den Anweisungen des Lehrers entsorgt.
  18. Damit alle Freude an den Experimenten haben, reinige alle von Dir benutzten Gegenstände gründlich.
  19. Nicht alle Flüssigkeiten dürfen im Waschbecken entsorgt werden. Das gilt besonders für Säuren! Sie schädigen die Rohre. Auch feste Abfälle gehören nicht in das Waschbecken, hierfür ist der Mülleimer da!
  20. Am Ende der Stunde werden die Arbeitsplätze vom Lehrer „abgenommen“, dann wird aufgestuhlt und erst dann ist die Stunde beendet.
  21. Bei großer Gefahr oder Unfällen das „Notaus“ betätigen, den Raum verlassen und im Sekretariat nachfragen, was zu tun ist. Bei Bedarf, erste Hilfe leisten. Bei Feuer die vorgeschriebenen Fluchtwege benutzen


FÜHRE NICHT SELBSTSTÄNDIG VERSUCHE MIT GEFÄHRLICHEN STOFFEN DURCH!!!
DU KÖNNTEST DEN KURZEN KNALL EIN LEBEN LANG BEREUEN.

Wesentliche Eigenschaften von Stoffen

Bearbeiten

Wenn man einzelne Stoffe genau im Experiment untersucht, stellt man fest, dass sie sich oft in mehreren Punkten unterscheiden.

Diese Tabelle beschreibt die Eigenschaften der Stoffe. Im Experiment verändern sie sich allerdings. Z. B. durch Verbrennen oder Auflösen in Wasser können sich die Eigenschaften verändern.

Eigenschaften Kohlenstoff Eisen Schwefel Zucker
Farbe: schwarz silbrig, glänzend zitronengelb weiß
Zustand: Feststoff Feststoff pulvriger Feststoff pulvriger, kristallartiger Feststoff
Geruch: kein Geruch kein Geruch kein Geruch kein Geruch
Sonstiges: nicht magnetisch magnetisch nicht magnetisch nicht magnetisch
Graphit leitet den elektrischen Strom leitet den elektrischen Strom leitet den elektrischen Strom nicht leitet den elektrischen Strom nicht
wasserunlöslich wasserunlöslich wasserunlöslich wasserlöslich
spröder Feststoff dehnbar / biegsam spröder Feststoff spröder Feststoff
Stoffe können wir an ihren Eigenschaften erkennen.

Solche Eigenschaften sind:

Bearbeiten

Farbe, Geruch, Geschmack, Löslichkeit, Brennbarkeit, Leitfähigkeit, Dichte und viele andere.

Damit die Stoffe voneinander unterschieden werden können, müssen sie durch nachprüfbare Eigenschaften exakt beschrieben werden. Zwei verschiedene Stoffe können nicht in allen Eigenschaften gleich sein.

Einige Eigenschaften scheinen sich auch zu ändern. So kann z. B. Wasser in drei verschiedenen Aggregatzuständen auftreten: Eis, Wasser, Wasserdampf.

Gold und Silber

Bearbeiten

Die Vorgänger der heutigen Chemiker hießen im Mittelalter Alchimisten. Die Alchimie war von der Idee der künstlichen Umwandlung von unedlen Metallen zu Gold getrieben. Viele Herrscher ließen Alchimisten für sich arbeiten und hofften, durch die Entdeckung des „Steins der Weisen“ Gold herstellen zu können. Abgesehen von ein paar Zaubertricks gelang das allerdings niemandem. Gold kann nicht einfach so hergestellt werden. Mancher Alchimist bezahlte für diesen Misserfolg mit dem Leben.

In diesem Versuch wirst Du lernen, wie man Gold und Silber herstellen und reich werden kann.

Außerdem lernst Du hier, wie man ein Versuchsprotokoll erstellt. Die grün getippten Wörter sollten in jedem Deiner zukünftigen Protokolle auftauchen, die blauen können zusätzlich ein Protokoll bereichern.

Versuch 1 – „Silber“ herstellen

Bearbeiten

Geräte 2 Bechergläser, Uhrglas, Bunsenbrenner, Stativtischchen

Chemikalien Kupfermünze, Natronlauge, Zinkstaub, Wasser

Versuchsdurchführung Einige blanke Kupfermünzen werden in ein Becherglas gelegt und mit konzentrierter Natronlauge übergossen. Man fügt dann eine winzige Menge Zinkstaub hinzu und schließt das Becherglas mit einem Uhrglas. Dann erhitzt man alles mit kleiner Bunsenbrennerflamme etwa 5 Minuten lang und bringt das Gemisch zum Sieden. (Vorsicht: Lauge spritzt und ätzt ⇒ unbedingt eine Schutzbrille aufsetzen)

Nach einigen Minuten wird die Flamme abgestellt und man gießt die erkaltete Lösung in ein anderes Gefäß ab, so dass die Münzen im ersten Becherglas bleiben. Die Münzen werden nun abgespült und anschließend mit einem Tuch poliert und genau beobachtet.

Zeichnung vom Versuchsaufbau:

Versuchsaufbau Herstellung Verzinken
Versuchsaufbau Herstellung Verzinken
Beobachtung Schlussfolgerung
die Lauge kocht und brodelt Nicht nur Wasser kann kochen, auch andere Flüssigkeiten kochen. Chemiker nennen diesen Vorgang auch „sieden“.
die Münze färbt sich silbrig Das Zinkpulver setzt sich auf der Münze fest und färbt sie silbrig. Die Natronlauge hat dabei die Aufgabe, Schmutz und Fett auf der Münze zu lösen, damit sich möglichst überall das Zinkpulver festsetzen kann.

Zusatzinfo zur Verzinkung

Bearbeiten

Das Verzinken wird fast überall eingesetzt, wo mit reinem Eisen gearbeitet wird. Da Eisen rostet, möchte man es vor Wasser und Sauerstoff schützen, so dass es nicht rosten kann. Diesen Schutz bietet z. B. eine Zinkschicht. Mögliche Einsatzbereiche sind z. B. das Verzinken von Autoblechen, Brückenpfeilern, Geländern, Zäunen, Werkzeugen usw.

Versuch 2 – „Gold“ herstellen

Bearbeiten

Geräte: Tiegelzange und Bunsenbrenner

Durchführung

Die Münzen aus V1 werden sehr kurz in die rauschende Brennerflamme gehalten und gewendet, bis sich ihre Farbe ändert.

Versuchsaufbau

Versuchsaufbau der Herstellung von Messing
Versuchsaufbau der Herstellung von Messing
Beobachtung Schlussfolgerung
Die Münze wird „vergoldet“ Zink und Kupfer verschmelzen miteinander. Es ist ein neuer Stoff entstanden. Es hat sich Messing gebildet.


Zusatzinformationen

Bearbeiten

 Messing ist eine Legierung (Metallmischung) aus Kupfer und Zink. Es ist schon seit dem dritten Jahrtausend v. Chr. bekannt. Seither wurden daraus hauptsächlich Gefäße, Schmuck und Kunstgegenstände hergestellt.

Auch heute wird Messing wegen seiner goldähnlichen Farbe für Verzierungen und Beschläge verwendet. Viele Blechblasinstrumente und Teile von Holzblasinstrumenten werden aus Messing gefertigt. Man nutzt auch seine gute elektrische Leitfähigkeit und seine Stabilität aus. So sind z. B. oft Antennen und Hohlleiter aus Messing gefertigt. Häufig wird es auch wegen seiner guten Beständigkeit gegen Rost für Badezimmerarmaturen eingesetzt.

Eigenschaften

  • rötlich glänzendes Metall (je nach Mischungsverhältnis variiert die Farbe von goldorange (bei hohem Kupferanteil) bis hellgelb)
  • härter als reines Kupfer
  • schmilzt bei ca. 900–925 Grad Celsius (hängt von der Mischung ab)
  • Dichte: ca. 8,3 g/cm³
  • unmagnetisch

Messing weist Ähnlichkeiten mit  Bronze auf. Bronze ist eine Kupfer-Zinn-Legierung. Bei chemischen Versuchen passiert eine ganze Menge, aber was genau unterscheidet sie eigentlich von physikalischen Versuchen? Untersuche im Unterricht verschiedene Alltagsgegenstände und versuche dann, sie zu entzünden. Der Pfeil → bedeutet übrigens „daraus folgt“.


Versuch Beobachtung
Schlussfolgerung
Erhitzen von Ausgangsstoff Endstoff Sonstiges
Magnesiumband
  • silbrig glänzender Feststoff
  • biegsam
  • weißer Feststoff
  • spröde
weißer Rauch und hell gleißende Flamme Stoff hat sich verändert
→ Chemie
Kerzenstummel
  • rot
  • fest
  • wachsartig
keine Veränderung schmilzt Physik
Rübenzucker
  • weiß
  • kristallin
  • schwarze feste Masse
  • brennbarer weißlicher Rauch
  • brenzliger Geruch
  • enorme Volumenvergrößerung
Veränderung
→ Chemie
Kupfer
  • metallisch glänzend
  • rotbrauner Feststoff
  • biegsam
  • schwarzer Feststoff
  • spröde
kurzzeitig grüne Flamme Veränderung
→ Chemie
Magnesium
  • metallisch glänzend
  • silbriger Feststoff
  • biegsam
  • weißer Feststoff
  • spröde
  • weißer Rauch
  • starkes Aufglühen
Veränderung
→ Chemie
Zink
  • metallisch glänzend
  • silbriger Feststoff
  • biegsam
  • metallisch glänzend
  • silbriger Feststoff
  • biegsam
  Physik
Die Physik befasst sich mit Zuständen und Zustandsänderungen. Die Chemie befasst sich mit Stoffen und Stoffänderungen.


Eine chemische Reaktion ist gekennzeichnet durch eine Stoffumwandlung und einen Energieumsatz.

Beobachte und zeichne die Kerzenflamme mit ihren verschiedenen Temperaturzonen. Damit Du weißt, welche Zone die heißeste ist, führe anschließend folgende Versuche durch:

1. Versuch: Streichholz auf Dochthöhe

2. Versuch: Zwei Streichhölzer

Versuchsaufbau Kerzenflammen-Temperatur
Versuchsaufbau Kerzenflammen-Temperatur

Zeichne nun die heißeste Stelle ein und dann die Temperaturunterschiede in Deine Zeichnung ein. Kannst Du die Unterschiede erklären?


Im Flammenkern............................................................................................................................................... ...........................................................................................................................................................................

Im Flammenmantel............................................................................................................................................ ...........................................................................................................................................................................

Im Flammensaum ............................................................................................................................................. ...........................................................................................................................................................................

3. Versuch: Springende Flamme:

Lösche die Kerzenflamme und nähere Dich mit brennendem Streichholz. Was passiert?

........................................................................................................................................................................... ........................................................................................................................................................................... ........................................................................................................................................................................... ...........................................................................................................................................................................

Aufgaben

Bearbeiten
  1. Woraus besteht der Kern der Flamme?
  2. Welcher Vorgang läuft im äußersten Bereich der Flamme (Saum) ab?
Versuchsaufbau Warum brennt eine Kerze?
Versuchsaufbau Warum brennt eine Kerze?

Die Kerzenflamme hat ihre heißeste Stelle an ihrer Spitze, da dort die optimale Mischung aus Brennstoff und Sauerstoff vorliegt.

Der Kern wird von Luft abgeschirmt, deshalb kann hier keine Luft zu treten, und der Wachsdampf kann nicht optimal verbrennen.

Im Mantel wird das verdampfte Wachs durch die Hitze zersetzt, es entstehen Rußteilchen und brennbare Gase. Allerdings ist der Mantel noch geringfügig durch den Saum abgeschirmt.

Im Saum können Rußteilchen und Gase optimal verbrennen.

Bunsenbrenner
Bunsenbrenner

Im inneren Flammenkegel ist die Flamme am heißesten, da dort die optimale Mischung von Erdgas und Sauerstoff vorliegt
optimale Verbrennung

Merke: Für jede Verbrennung werden Sauerstoff und ein Brennstoff benötigt. Bei optimaler Mischung beider Stoffe ist die Verbrennung heiß und rußfrei.

Was brennt eigentlich an der Kerze - Wachs oder Docht? Mache doch mal den Versuch und entzünde ein Stück Wachs oder einen Wollfaden. Welcher von beiden brennt wie die Kerze?

Versuch Beobachtung Schlussfolgerung
Verbrennen des Dochtes Docht glimmt, brennt aber nicht Docht alleine brennt nicht
Versuche ein Wachsstück an Kerze zu entzünden Wachs schmilzt, brennt nicht festes Wachs brennt nicht
Kerze am Docht anzünden lässt sich entzünden Wachsgase brennen
Nur durch Zusammenwirken von Wachs und Docht kann die Kerze brennen

Beweis durch Annähern eines Streichholzes an eine gerade erloschene Kerze!

→ Entzündung, obwohl der Docht nicht berührt wird.

V: Wir befestigen ein engmaschiges Kupferdrahtnetz, welches horizontal zwischen zwei Stativen befestigt ist, über einem Bunsenbrenner und entzünden die Flamme jedoch oberhalb des Netzes.

B: Ist das Netz groß und feinmaschig genug, brennt das Gas nur oberhalb. Benutzt man für diesen Versuch ein weitmaschiges Netz, kann man beobachten, dass, nachdem das Netz zu glühen beginnt, die Flamme auch nach unten durchschlägt.

S: Das Kupfer leitet die Wärme ab und das Gas unterhalb des Netzes kommt so nicht auf die nötige Temperatur, um sich zu entzünden.
Je nach verwendetem Netz wird dieses so heiß, dass auch unterhalb die Zündtemperatur erreicht wird.

Der Versuch lässt sich auch ergänzen, indem man das Netz nicht fixiert, sondern es an einem Halter befestigt und diesen in die Hand nimmt (Schutzhandschuhe nicht vergessen). Bewegt man das Netz leicht nach unten auf die Flamme zu, so wird sie aus demselben Grund wie bereits beschrieben "gestaucht". Problem der Naturwissenschaftler: Wie kann man die Masse von Stoffen miteinander vergleichen, wenn zwei Körper nie die gleiche Form haben?

Wikipedia hat einen Artikel zum Thema:

Wie kann man zwei Körper unterschiedlicher Form hinsichtlich ihres Gewichtes vergleichen? Eigentlich gar nicht! Man muss das Volumen mit in Betracht ziehen, sonst könnte man meinen, Kohle sei schwerer als Blei, nur weil man ein großes Stück Kohlenstoff mit einem kleinen Bleiwürfel vergleicht

Lösung: Wir berechnen das Volumen eines Körpers mit ein, indem wir die Masse durch das Volumen teilen. Man erhält so die Dichte. Die Dichte ist eine Stoffeigenschaft.

Jedes Element hat eine andere Dichte. Man spricht deshalb auch von der spezifischen Dichte

Bestimmung der Dichte von Aluminium in drei Schritten

Bearbeiten

Zur Bestimmung der Dichte muss man die Masse und das Volumen eines Körpers bestimmen:

1. Bestimmung der Masse eines Aluminiumwürfels:

Waage: 2,7 g


2. Bestimmung des Volumens (zwei Wege sind möglich):

Weg 1: Bestimmung des Volumens durch Messen der Kantenlänge: 1 cm3
Weg 2: Bestimmung des Volumens durch Wasserverdrängung: 1 ml, das entspricht 1 cm3


3. Berechnung der Dichte:


→ Die Dichte von Al beträgt 2,7 g/cm3


Die Dichte (Formelzeichen: ρ (griechisch: rho)), ist das Verhältnis der Masse m eines Körpers zu seinem Volumen V. Die Dichte ist eine Stoffeigenschaft.


Die SI-Einheit der Dichte ist kg/dm3. Oft sieht man die Dichte noch in g/cm3.


Manchmal wird die Dichte auch als spezifisches Gewicht ausgedrückt.

Aufgaben

Bearbeiten
  1. Wie kann man die Dichte berechnen?
  2. Wie kann man die mittlere Dichte eines Körpers bestimmen? Schlage ein Experiment vor (Tipp: Badewanne)
  3. Betrachte die Dichtetabelle. Aus welchen Materialien würdest Du umweltfreundlichere Autos bauen? Warum?
  4. Stoffe dehnen sich beim Erwärmen aus. Hat das einen Einfluss auf die Dichte?

Dichtetabelle

Bearbeiten

Diese Tabelle gibt die Dichte einiger Stoffe und Elemente bei Normaldruck an.

Stoff Dichte in g/cm3 Stoff Dichte in g/cm3
Osmium 22,6 Schwefel 2,1
Platin 21,5 Phosphor 1,8
Gold 19,3 Magnesium 1,8
Uran 18,7 Meerwasser 1,025
Quecksilber 13,6 Wasser 0,99
Blei 11,3 Eis 0,91
Silber 10,5 Kalium 0,86
Kupfer 8,9 Alkohol 0,79
Eisen 7,8 Benzin 0,68
Zinn 7,3 Sauerstoff 0,0013
Zink 7,1 Stickstoff 0,0012
Chrom 6,9 Luft 0,0012
Kohlenstoff 3,5 Neon 0,00084
Aluminium 2,7 Helium 0,00017
Silizium 2,3    
  1. Wie unterscheidet sich Chemie von anderen Naturwissenschaften?
  2. Nenne mind. 10 Punkte der Laborordnung, die Deinem Schutz dienen.
  3. Was brennt nun eigentlich, wenn du eine Kerze angezündet hast? Beschreibe, welche Aufgabe der Docht bei der Kerze hat.
  4. Die folgenden Sätze beschreiben, was beim Anzünden einer Kerze geschieht. Leider sind sie durcheinander geraten. Wie muss die richtige Reihenfolge lauten?
    a) Am Docht befindet sich festes Wachs. Es brennt nicht.
    b) Der Wachsdampf entzündet sich und beginnt zu brennen.
    c) Das flüssige Wachs steigt im Docht nach oben (ähnlich wie Tinte im Löschpapier).
    d) Der Wachsdampf erreicht seine Entzündungstemperatur.
    e) Wenn man eine Streichholzflamme an den Docht hält, wird das Wachs erhitzt und schmilzt.
    f) Das Wachs beginnt zu sieden und verdampft.
  5. Nenne Eigenschaften der folgenden Elemente: Eisen, Schwefel, Kupfer, Zink, Kohlenstoff, Magnesium.
  6. Beschreibe, wie man Metalle verzinken kann und beschreibe dann, wie man Messing herstellt.
  7. Was muss man beachten, um sich vor Natronlauge zu schützen?
  8. Nenne Kennzeichen von chemischen Reaktionen.
  9. Vergleiche die Flammen von Brenner und Kerze. Nenne verschiedene Eigenschaften und die Gründe dafür.
  10. Wiederhole die Regeln zum Bestimmen der Dichte.
  11. Wie ist die Einheit der Dichte? Gib sie bei allen Rechnungen mit an!
  12. Wie viel cm3 entsprechen einem 1ml Wasser?
  13. Wie schwer ist ein Kupferwürfel mit dem Volumen von 1,55 ml? Wie schwer ist ein vergleichbarer Bleiwürfel?
  14. Um welchen Faktor ist das Schwermetall Blei schwerer als das Leichtmetall Aluminium?
  15. Wie kann man die mittlere Dichte Deines Körpers bestimmen? Schlage ein Experiment vor (Tipp: Badewanne).
  16. Aus welchen Materialien würdest Du umweltfreundlichere Autos bauen? Warum?

Einteilung chemischer Reaktionen

Bearbeiten

Die Vereinigung

Bearbeiten

Ein wissenschaftlicheres Wort für Vereinigung ist  Synthese.

Die Trennung von Eisen und Schwefel

Bearbeiten

Oft sind in der Natur und auch im Haushalt Stoffe nicht rein, sondern vermischt. Kann man das wieder rückgängig machen? Wie kann man ein Gemisch trennen? Wenn Du kurz überlegst, fallen Dir sicherlich viele Methoden ein.

Mischung und Trennung von Eisen und Schwefel
Mischung und Trennung von Eisen und Schwefel


Drei mögliche Methoden, mit denen sich Eisen- und Schwefelpulver trennen lassen:

  1. Trennung durch einen Magneten unter einem Blatt Papier
  2. Trennung durch unterschiedliche Schwimmeigenschaften in Wasser (schwierig!!!)
  3. Sortieren, nach Farbe, Körnchengröße und Struktur


Gemische kann man (durch geeignete Hilfsmittel) voneinander trennen. Dabei macht man sich zunutze, dass sich zwei Stoffe in mindestens einer ihrer Eigenschaften unterscheiden.


Abwandlung des Experiments: Reaktion von Eisen mit Schwefel

Bearbeiten

Versuchsbeschreibung
Entzündung mit glühendem Nagel oder einer Stricknadel

Beobachtung
Selbstständiges Durchglühen, es bildet sich ein schwarzes, festes Produkt

Test auf weitere Eigenschaften

  • höhere Dichte als Wasser
  • das Produkt ist nicht mehr magnetisch

Schlussfolgerung
Die neuen Eigenschaften zeigen, dass ein völlig neuer Stoff entstanden ist. Dieser Stoff ist nicht Eisen und nicht Schwefel, sondern komplett neu! Er wird nach seinen Ausgangsstoffen benannt: „Schwefeleisen“ oder auch Eisensulfid.

Er war vorher nicht dort, er ist erst entstanden. Eisen und Schwefel sind nicht mehr vorhanden!

Eisen + Schwefel Eisensulfid + Energie


Entsteht aus mindestens 2 verschiedenen Reinstoffen ein völlig neuer Reinstoff, so spricht man von einer Vereinigung. Dieser neue Reinstoff wird auch "Verbindung" genannt.

Vereinigung von Kupfer mit Schwefel

Bearbeiten

Versuchsbeschreibung

  1. Gib in ein Reagenzglas 2 Spatelspitzen Schwefel und spanne es fast waagerecht ein. Schiebe einen 1 cm • 5 cm langen Kupferstreifen bis zur Mitte in das Reagenzglas und verschließe es locker mit Glaswolle.
  2. Erhitze zuerst das Kupferblech und bringe dann den Schwefel zum Sieden, so dass der Schwefeldampf über das heiße Kupferblech streicht.
  3. Untersuche nun die entstandene Substanz. Notiere Beobachtung und Schlussfolgerung im Heft.
Ergebnis des Versuches in Natura

Beobachtung
Das Kupferblech glüht → Energie wird frei. Das Endprodukt ist ein blau-grauer, brüchiger Stoff

Schlussfolgerung
Kupfer und Schwefel haben sich zu einem neuen Stoff, dem Schwefelkupfer, mit chemischen Namen  Kupfersulfid, vereinigt. Die Verbindung Kupfersulfid ist ein blaugrauer, poröser und brüchiger Stoff.

Kupfer + Schwefel Kupfersulfid + Energie
Vereinigung von Kupfer und Schwefel
Vereinigung von Kupfer und Schwefel


Zersetzung von Wasser

Bearbeiten

Wenn sich ein Stoff zersetzt, nennen wir es zukünftig  Analyse.

Versuchsbeschreibung
Im  Hofmannschen Zersetzungsapparat (= Dreischenkelgerät) wird Wasser unter etwa 12 V Spannung gesetzt und die Produkte werden untersucht.

Zersetzung
Zersetzung


Beobachtung Schlussfolgerung
2 Gase entstehen im Verhältnis 1:2 → Aus Wasser bilden sich zwei neue Stoffe
Die Menge des Wassers nimmt ab

→ Das Wasser ist der Ausgangsstoff der Reaktion, das in Gas
       umgewandelt wird.

Gas 1 zeigt eine positive Knallgasprobe → Es ist Wasserstoff entstanden
Gas 2 zeigt eine positive Glimmspanprobe → Es ist Sauerstoff entstanden
Wird der Strom ausgeschaltet, findet keine Reaktion mehr statt → Die Reaktion benötigt Energie zum Ablaufen


Wasser + E Sauerstoff + Wasserstoff


Der Reinstoff Wasser (eine Verbindung) wurde in zwei Reinstoffe zersetzt. Dieser Vorgang läuft nur solange, wie Energie zugefügt wird.
Zusatzinformation

Vielleicht hast Du schon mal die chemische Formel H2O gehört. Sie ist die Formel von Wasser. In einem späteren Kapitel wirst Du mehr darüber lernen.

Die Zersetzung von Quecksilberoxid

Bearbeiten
Wikipedia hat einen Artikel zum Thema:

Der folgende Versuch ist für die Schule ungeeignet, da im Verlauf ein sehr giftiger Stoff entsteht.

Theoretischer Versuch: Erhitzen von Quecksilberoxid. Das entstehende Gas wird in einem mit Wasser gefülltem Reagenzglas aufgefangen (pneumatisch).

Zersetzung von Quecksilberoxid
Zersetzung von Quecksilberoxid


Beobachtung
Schlussfolgerung
  • beim Erhitzen entstehen Gasblasen
  • die spätere Glimmspanprobe ist positiv
→ Sauerstoff ist entstanden
silbrig glänzende Tröpfchen am oberen Ende des Reagenzglases
(dort wo es noch kälter ist)

→ Es ist das Metall Quecksilber entstanden


Quecksilberoxid besteht aus zwei Elementen: Quecksilber und Sauerstoff. Quecksilber ist ein grauer Stoff, der sich nach dem Erhitzen am kalten Reagenzglasrand absetzt.

Spaltung Quecksilber
Spaltung Quecksilber


Entstehen aus 1 Reinstoff mindestens 2 neue Reinstoffe, so spricht man von einer Zersetzung.


Quecksilberoxid + E Quecksilber + Sauerstoff
Reinstoff + E Reinstoff + Reinstoff
Verbindung + E Element + Element

Quecksilber selbst kann durch keinen weiteren Versuch zersetzt werden.

Erweiterte Elementdefinition: Ein Element ist ein Reinstoff, der nicht weiter zersetzt werden kann.

Die Zersetzung von Silbersulfid

Bearbeiten

Ein ähnlicher Versuch ist durch das Erhitzen von Silbersulfid ('Schwefelsilber') möglich. Kannst Du ihn erklären?

Vor der Reaktion:


vor der Reaktion
vor der Reaktion


Nach der Reaktion sieht das Glasrohr folgendermaßen aus:


nach der Reaktion
nach der Reaktion



Auflösung:

Beobachtung
Schwefelsilber ist ein grau/schwarzer Stoff, der in einem Rohr zur Reaktion gebracht wird. Dabei entsteht aus ihm Schwefel und Silber. Das Schwefel setzt sich am kalten Glasrand ab, das Silber bleibt wegen seiner hohen Dichte am Glasboden liegen.

Schlussfolgerung
Beim Erhitzen zerfällt Schwefelsilber in seine Elemente Silber und Schwefel. Man spricht auch von einer „thermischen Zersetzung“.

Berzelius neue „Geheimschrift“

Bearbeiten

 Alchemisten hatten im Mittelalter oft die Aufgabe Gold herzustellen. Sie waren dazu auf der Suche nach dem so genannten „Stein der Weisen“, welcher auch ewiges Leben versprach. Damit niemand die "Geheimnisse" der Alchemisten stehlen konnte, notierte jeder von ihnen seine Ergebnisse in einer anderen Geheimschrift. Da Alchemisten zwar kein Gold herstellen konnten, aber oft unglaubliche und eindrucksvolle Experimente durchführten, glaubten viele Menschen, dass die Chemie Hexerei sei und hatten Angst davor.

Der Schwede  Jöns Jakob Freiherr von Berzelius (1779-1848) führte sehr umfangreiche und für die damalige Zeit extrem genaue Experimente durch. Er wusste dadurch, dass es eine Vielzahl von Stoffen gab und er nannte alle Reinstoffe, die nicht durch eine Vereinigung entstanden sind, Elemente. Stoffe die durch eine Vereinigung entstehen, nannte er Verbindung. Er bestimmte die für Elemente noch heute gültige und wichtige Definition:

Ein Element ist ein Reinstoff, der nicht weiter zersetzt werden kann

Durch diese genaue Definition war es ihm möglich, sogar drei neue chemische Elemente,  Cer ,  Selen und  Thorium zu entdecken und die Elemente  Silizium,  Zirkonium und  Titan als Erster in reiner Form zu isolieren.

Damit alle Chemiker davon profitieren konnten, führte er zur Vereinheitlichung das heute übliche System der chemischen Formelzeichen ein, bei dem jedes Element durch einen oder zwei Buchstaben des Alphabets symbolisiert wird. Bei Symbolen mit zwei Buchstaben wird, um Verwechslungen zu vermeiden, der Zweite grundsätzlich klein geschrieben. Nun konnten auch nicht-Chemiker diese Schrift verstehen und Einblick in die neue Wissenschaft haben. So verdiente sich Berzelius die Ehre, kein Alchemist mehr gewesen zu sein, sondern vielmehr der Begründer der modernen Chemie.

Beispiele für Berzelius neue „Schrift“:

Bearbeiten
Elementname Symbol Ursprung   Elementname Symbol Ursprung
Wasserstoff H Hydrogenium   Aluminium Al Aluminium
Sauerstoff O Oxygenium   Gold Au Aurum
Kohlenstoff C Carboneum   Silber Ag Argentum
Stickstoff N Nitrogenium   Quecksilber Hg Hydrargyrum
Schwefel S Sulfur   Blei Pb Plumbum
Kupfer Cu Cuprum   Magnesium Mg Magnesia
Eisen Fe Ferrum   Phosphor P Phosphorium
Hinweis: Der wissenschaftliche Name hat oft seinen Ursprung aus dem Latein oder Altgriechischen.

Aufgaben:

Bearbeiten
  1. Lies den Text und unterstreiche mit einem Bleistift alle Schlüsselwörter mit einer Wellenlinie, alle Nebeninformationen mit einer geraden Linie.
  2. Lies den Text nochmals durch, wenn Du keine Änderungen mehr an Deinen Schlüsselwörtern und den Nebeninformationen hast, kennzeichne die Schlüsselwörter mit einem Textmarker und unterstreiche die Nebeninformationen mit einer feinen roten Linie.
  3. Erstelle einen Spickzettel mit den 10 wichtigsten Schlüsselwörtern (und Zeichnungen/ Skizzen)
  4. Übe mit Deinem Spickzettel einen freigesprochenen Vortrag zu halten
  5. Überlege Dir, warum Berzelius eine „Kurzschreibweise“ eingeführt hat. (Tipp: Welchen Sinn haben Abkürzungen im Straßenverkehr)
  6. Warum hatten die Elemente damals oft einen lateinischen oder griechischen Namen?

Zusammenfassung: Gemisch - Reinstoff - Element - Verbindungen

Bearbeiten
Reinstoffe
waagerechte Pfeile 1
waagerechte Pfeile 1

Gemisch

Eigenschaften von Reinstoffen
Jeder noch so kleine Teil besitzt alle Eigenschaften des Stoffes. Das heißt: alle Teilchen dieses Stoffes sind gleich! zum Beispiel:

  • reiner Zucker
  • reines Kochsalz
senkrechte Pfeile
senkrechte Pfeile

Eigenschaften eines Gemisches
Jeder einzelne Bestandteil eines Gemisches ist einem der beiden ursprünglichen Reinstoffe zuzuordnen und hat dessen Eigenschaften. Beispiele sind:

  • Schwefel / Eisen;
  • Mineralwasser/ Kohlensäure
  • Kakao = Schokolade/ Fett/ Milch/ Wasser
  • Kaffee/ Wasser

Eigenschaften von Elementen
Elemente sind nicht zersetzbar

Eigenschaften von Verbindungen
Verbindungen wie zum Beispiel

  • Schwefeleisen
  • Schwefelsilber
  • Quecksilberoxid

sind zersetzbar.

Element
waagerechte Pfeile 2
waagerechte Pfeile 2

Verbindung

Aufgaben

Bearbeiten
  1. Lies den Text in der Tabelle aufmerksam und vervollständige die folgenden Sätze:
    a) Die Trennung eines ............... ist mit einfachen physikalischen Methoden möglich.
    b) Ein ................ kann nicht mehr in zwei Reinstoffe zersetzt werden.
    c) Die ........................ funktioniert nur bei Verbindungen.
    d) Bei der Vereinigung zweier Reinstoffe entsteht eine ........................... .
    e) Die Trennung (Zersetzung) einer Verbindung ist nur mit ....................... Mitteln möglich.
    f) Zerkleinert man ein Gemisch, so findet man mindesten zwei verschiedene ........................... .
    g) Ein Element ist ein Reinstoff, der nicht weiter ...................... werden kann.
  2. 2. Beispiele aus der Chemie:
    a) Schwefel und Eisen vereinigen sich zu ....................... .
    b) Zersetzt man Silberschwefel so entstehen ................. und .................... .
    c) Die Verbrennung von Kohle ist eine ...................... von Kohlenstoff und Sauerstoff.
    d) Kakao ist ein Gemisch aus ................., ..................., ..................... und ....................... .
    e) Mineralwasser mit Sprudel ist ein ................... aus Kohlenstoffdioxid und Wasser.
  3. Schlage in Deinem Chemieheft alle bisher benutzen Chemikalien nach und trage sie in Dein Heft in eine Tabelle ein. Unterstreiche dann alle Stoffe mit den folgenden Farben:
    Gemische in gelb, Verbindungen in grün, Reinstoffe in blau und Elemente in rot
Stoff Zersetzungsprodukt Weiter zersetzbar?
Rohrzucker Zuckerkohle, Qualm nein
..... ..... .....

Karteikarten erstellen

Bearbeiten

Erstelle zum Lernen eigene Karteikarten mit den bisher genannten Definitionen und Zeichnungen.

Folgende Begriffe sollten dabei auf keinen Fall fehlen:

  • Element
  • Vereinigung,
  • Zersetzung,
  • Elementsymbole,
  • Reinstoff,
  • Aggregatzustände
  • Gemisch
  • Trennungsmethoden

Ein Element ist ein Stoff, der aus gleichen Atomen besteht.

Wiederholungsfragen Kapitel 2

Bearbeiten
  1. Nenne Merkmale von chemischen Reaktionen und entscheide, ob eine in den Beispielen eine solche vorliegt:
    a) Wäsche bei 40°C waschen
    b) eine CD zerbrechen
    c) eine CD schmelzen
    d) Holz im Kamin entzünden
  2. Erkläre die Begriffe Vereinigung und Zersetzung und nenne für beide Reaktionen je zwei Beispiele.
  3. Was ist der Unterschied zwischen einer Vereinigung (von z. B. Eisen und Schwefel) und dem Mischen (von z. B. Eisen und Schwefel)?
  4. Was ist der Unterschied zwischen einer Zersetzung und dem Trennen?
  5. Nenne Stationen im Leben von Berzelius.
  6. Erkläre mit Deinen Worten den Vorgang der Vereinigung. Warum ist ein Gemisch nicht vereinigt?
  7. Eine Testfrage lautete: Wie kann man feststellen, ob sich Silber und Schwefel in einer Reaktion tatsächlich vereinigt habe? (5P)
    Ein Schüler schreibt dazu: „Wenn sich Silber und Schwefel zu Silbersulfid vereinigen, kann man es leicht zeigen, indem man beide Stoffe in Wasser gibt. Silber schwimmt nicht und Schwefel schwimmt. Durch diese Trennung ist beweisen, dass beide Stoffe in Silbersulfid enthalten sind.“
    Wie viele Punkte würdest Du dem Schüler geben? Begründe Deine Meinung?

Erforschen des Verbrennungsvorgangs

Bearbeiten

Erforschung des Verbrennungsvorgangs: Vereinigung oder Zersetzung?

Bearbeiten

Die Verbrennung von Brennstoffen ist ein chemischer Vorgang, der für die Menschheit schon immer einer der wichtigsten war. Erst durch die Entdeckung des Feuers konnte eine Zivilisation sich entwickeln. Auf den folgenden Seiten wirst Du viel Neues über das Feuer (welches ja im Altertum noch als Stoff, sogar als Element verstanden wurde) und den Verbrennungsvorgang lernen. Zuerst beschäftigen wir uns mit der Frage, ob eine Verbrennung eine Vereinigung oder eine Zersetzung ist. Dazu schauen wir uns die Masse vor und nach der Reaktion an und ziehen Schlussfolgerungen.

Würde man die Masse bei einer Verbrennung untersuchen, so wären drei theoretische Ergebnisse denkbar:

Massenzunahme → Vereinigung

Massenabnahme → Zersetzung

Keine Massenänderung → Verbrennung ist keine chemische Reaktion

Schüler vermuten hier vieles… Es ist ja auch verwirrend, denn eine Kerze und ein Grillfeuer verlieren doch Masse, oder?

Verbrennung von Stahlwolle auf einer Balkenwaage

Bearbeiten

Versuchsbeschreibung

Erforschen des Verbrennungsvorgangs1
Erforschen des Verbrennungsvorgangs1

Stahlwolle wird an eine Balkenwaage gehängt und mit dem Brenner entzündet. Als Alternative kann die Stahlwolle auch mit einer 4,5 V Batterie entzündet werden.

Beobachtung
Die Seite mit der Stahlwolle wird schwerer. (Zuerst wird die Seite mit der Stahlwolle vielleicht leichter, dann deutlich schwerer.)

Schlussfolgerung
Die Verbrennung ist eine Reaktion mit Luftsauerstoff. Die Stahlwolle verbrennt dabei mit Sauerstoff zu Eisenoxid, welches schwerer als Eisen ist.

→ Jede Verbrennung ist eine Vereinigung mit Sauerstoff (=Oxidation).
Es bildet sich ein Oxid.

Aufgaben

Bearbeiten
  1. Erkläre mit eigenen Worten die Massenänderung bei diesem Versuch.
  2. Warum wird die Kerze bei der Verbrennung leichter?
  3. Die Feuerwehr ist immer daran interessiert, wie man am Besten ein Feuer löschen kann. Vergleiche die Löschwirkung von Wasser und CO2 - Schaum.
  4. Wie würde die Feuerwehr ein brennendes Holzfeuer, und wie ein Benzinfeuer löschen?

Erforschung des Verbrennungsvorgangs: Ist Luft ein Element?

Bearbeiten

Der Sauerstoff für die Verbrennung kommt aus der Umgebungsluft. Luft wurde im Altertum als Element bezeichnet. Nachdem Du schon weißt, dass Feuer kein Element ist (und Wasser auch nicht - siehe Wasserzersetzung), entsteht die Frage, ob Luft ein Element oder ein Gemisch ist.

Versuchsbeschreibung
Spiritus wird unter einer Glasglocke entzündet.

Erforschen des Verbrennungsvorgangs2
Erforschen des Verbrennungsvorgangs2
Beobachtung
Schlussfolgerung
Wasserpegel sinkt und manchmal entweicht Luft beim Reaktionsstart → Durch die Hitze der Flamme wird die Luft erwärmt. Sie dehnt sich aus.
Die Flamme erlischt. → Spiritus verbrennt mit Sauerstoff. Wenn der Sauerstoffanteil von 21% auf 16% gesunken ist, erlischt die Flamme.
Das Wasser steigt etwa 20%. → Ein Teil des Sauerstoffs hat reagiert. Da dieser aber in Kohlenstoffdioxid umgewandelt wird, hat dieser Effekt keine Auswirkung auf die Volumenänderung. Tatsächlich verringert sich das Volumen, weil das Gasgemisch nach dem Verlöschen der Flamme abkühlt und sich zusammenzieht. Eine verbreitete Fehlvorstellung ist, durch den „fehlenden“ Sauerstoff würde Platz frei.

http://www.wer-weiss-was.de/theme50/article2187155.html

→ Luft ist ein Gemisch und kein Element

Die Zusammensetzung der Luft

Bearbeiten
In Luft sind enthalten Volumenprozent
Sauerstoff 20,95%
Stickstoff 78,1%
Edelgase 0,93%
Kohlenstoffdioxid + Restgase 0,03%
Rund 1/5 der Luft besteht aus Sauerstoff.

Nur dieser kann sich mit brennbaren Stoffen bei einer Verbrennung vereinigen.

Die Vereinigung eines Stoffes mit Sauerstoff nennt man Oxidation.

Die Verbindungen der Elemente mit Sauerstoff nennt man Oxide.
Erforschen des Verbrennungsvorgangs3
Erforschen des Verbrennungsvorgangs3

Aufgaben

Bearbeiten
  1. Aufgabe
    a) In einem Becherglas, das mit Wasser gefüllt ist, steht ein Reagenzglas mit der Öffnung nach unten. Es enthält Stahlwolle, die mit
    Wasser getränkt ist (siehe Zeichnung). Lässt man den Versuch zwei Tage stehen, steigt das Wasser im Reagenzglas an. Erkläre.
    b) Um wie viel Prozent kann das Wasser nur steigen? Warum?
  2. Kommt man bei Wiederholung des Versuches zum gleichen Ergebnis?
  3. Warum kannst Du ausschließen, dass Luft ein Element ist?

Informationen zum Sauerstoff

Bearbeiten

Nach:

Wikipedia hat einen Artikel zum Thema:


 Sauerstoff wurde im Mittelalter auch Oxygenium genannt (von griech. oxýs „scharf, spitz, sauer“ und genese „erzeugen“ - (Symbol O)), weil man falscherweise vermutete, dass Sauerstoff für die Bildung von Säuren verantwortlich ist. Das Element Sauerstoff stellt in der Erdhülle mit 49,4 Massenprozenten das häufigste, im Weltall das dritthäufigste Element dar. Unter Normalbedingungen ist es ein farb-, geruch- und geschmackloses Gas.

Atomarer Sauerstoff, das heißt Sauerstoff in Form freier, einzelner Sauerstoffatome, kommt in der Natur nicht vor. Vielmehr kommt er immer als Verbindung aus zwei Sauerstoff-Atomen (O2) vor. Eine weitere Form ist das wenig stabile Ozon (O3). In der Luft hält sich der relativ reaktionsfreudige Sauerstoff auf Dauer nur wegen der Tatsache, dass die Erde Lebewesen beherbergt, die immer neuen Sauerstoff produzieren - ansonsten würde er nur in Verbindungen, vor allem in Form von Metalloxiden oder Wasser vorkommen.

Von der Urzeit bis über das Mittelalter hinaus war das Feuer für den Menschen eine unerklärliche Erscheinung. Lange Zeit wurde es von den Menschen als Gabe des Himmels hingenommen. Die Chemiker des Mittelalters, die sogenannten Alchimisten, fingen an, sich über das Wesen des Feuers Gedanken zu machen. Sie kamen dabei zu der Ansicht, das Feuer sei ein Grundstoff. Gegen Ende des 17. Jahrhunderts suchte man eine Erklärung für die Verbrennung. Die Forscher vermuteten einen leichten geheimnisvollen Stoff, das Phlogiston, der aus brennenden Stoffen entweicht. Somit wäre die Verbrennung allerdings eine Zersetzung gewesen, was leicht zu widerlegen ist. Bei dieser Annahme blieb man auch dann noch, als der schwedische Apotheker  Carl Wilhelm Scheele 1772 den Sauerstoff entdeckte.

Der Sauerstoff war nun zwar erforscht, doch seine Bedeutung bei der Verbrennung noch nicht geklärt. Dafür sorgte dann der Pariser Forscher  Antoine Lavoisier (1743 - 1794). Beim Experimentieren kam dieser zu dem Ergebnis, dass sich bei der Verbrennung ein Stoff mit Sauerstoff verbindet. Er konnte mit einer Waage nachweisen, dass ein Stoff beim Brennen nicht leichter, sondern schwerer wird. Der Grund dafür ist das Gewicht des Sauerstoffs, der während der Verbrennung aufgenommen wird. Die Erklärung der Verbrennung, die uns heute selbstverständlich, notwendig und unabkömmlich erscheint, ist also das Ergebnis langen Forschens.

Einige bekannte Verbindungen, in denen Sauerstoff vorkommt sind Wasser, Kohlendioxid, Siliziumdioxid (=Sand), viele Säuren, in vielen Salzen als Säurereste, Zucker, Silikate und viele mehr.

  • Sauerstoff ist das häufigste Element auf der Erde. Es ist ein farb- und geruchloses Gas
  • Es hat die chemische Formel O2 (d.h. ein Sauerstoffatom ist mit einem anderen vereinigt)
  • Siedepunkt: -182.9°C (Sauerstoff ist als Flüssigkeit hellblau)
  • Schmelzpunkt: -218.4°C (Sauerstoff ist als Feststoff eine hellblaue kristalline Masse)
  • Bei 0°C hat Sauerstoff (1,43 g/l) eine größere Dichte als Luft (1,29 g/l)
  • Auch Gase lösen sich in Wasser (nicht nur Feststoffe wie Zucker oder Salz). Bei 20°C lösen sich in einem Liter Wasser 31,1 ml O2 - So können auch Lebewesen, die unter Wasser leben, atmen.
  • Sauerstoff wurde 1774 unabhängig voneinander durch  Joseph Priestley und Carl Wilhelm Scheele entdeckt.

Der Sauerstoff

Bearbeiten

Im Labor kann man Sauerstoff leicht aus Nitraten herstellen. Diese sind aus diesem Grunde auch in vielen Sprengstoffen enthalten.
Aber Achtung! Führe diese Versuche nicht außerhalb der Schule durch – Nitrate sind unberechenbar.
Selbst mit viel Erfahrung ist der Umgang damit sehr gefährlich!

Versuchsbeschreibung
Erhitzen von Kaliumnitrat. In das Reagenzglas werden dann die folgenden Stoffe gehalten:

a) Glimmspan

b) Holzkohle

c) Schwefel

Erforschen des Verbrennungsvorgangs4
Erforschen des Verbrennungsvorgangs4

Beobachtung

  • Das Salz Kaliumnitrat (weißer kristalliner Feststoff) schmilzt
  • Gasblasen steigen auf
  • weißer Rückstand

zu a) Glimmspanprobe positiv

zu b) Holzkohle glüht auf

zu c) Schwefel verbrennt mit hellblauer Flamme

Schlussfolgerung
Kaliumnitrat wird zersetzt in Sauerstoff und Kaliumnitrit (Vorsicht: Giftig!). Der Sauerstoff ermöglicht erst die Verbrennung des Kohlenstoffes im Holz. Er ist somit für die Oxidation verantwortlich. Da das Kaliumnitrat den Sauerstoff bereitstellt, wird es als

Oxidationsmittel

bezeichnet.

Kaliumnitrat + Energie Sauerstoff + Kaliumnitrit
Holzkohle + Sauerstoff Kohlenstoffdioxid + Energie
Schwefel + Sauerstoff Schwefeloxid + Energie
Sauerstoff ist unverzichtbar als Partner für jede Verbrennung. Er oxidiert dabei seinen Reaktionspartner und wird deshalb auch Oxidationsmittel genannt.

Was brennt bei der Kerze?

Bearbeiten
Wikipedia hat einen Artikel zum Thema:


Kerzen dienten früher, neben Fackeln, Öl- und Talglampen, als Lampen für die Lichterzeugung. Kerzen werden heute noch in der Kirche, zu Hause oder bei Festen verwendet, um eine entspannte Atmosphäre zu schaffen.

Es gibt eine wichtige und einfache Frage: Was brennt da eigentlich? Du wirst Dich wundern, wie kompliziert die Antwort ist.

Führe doch mal in Gegenwart Deiner Eltern folgenden Versuch durch: Nimm eine brennende Kerze, lösche diese und nähere dich sofort von Oben mit einem brennendem Streichholz.

→ Entzündung trotz Distanz

Was folgt aus diesem Versuch? Was brennt nun eigentlich? Der Docht?

Erklärung: Ein saugfähiger, nicht schmelzbarer Docht, meist ein Faden aus Baumwolle, ist von niedrig schmelzendem Wachs umgeben. Als Wachs diente früher Bienenwachs (Schmelzpunkt bei ca. 65°C), heute meist Stearin (aus tierischen oder pflanzlichen Fetten gewonnen, Schmelzpunkt 56°C) oder Paraffin (Teelichter) mit einem Schmelzpunkt um 55 °C, das seit etwa 1830 aus der Erdölverarbeitung stammt.

Nach Anzünden des Dochts schmilzt das Wachs. Durch die Sogwirkung des Dochts wird ständig neues (geschmolzenes) Wachs in die Flamme transportiert, wo es verdampft und verbrennt → gasförmiges Kerzenwachs verbrennt.
Hypothese
Kerzenwachs + Sauerstoff „brennbares Gas“ + Kohlendioxid +

Energie

Zusatzinformation

Die Konvektion, d.h. das Aufsteigen der warmen Verbrennungsgase, versorgt die Flamme mit unverbrauchter Luft und gibt der Kerzenflamme die charakteristische lang gestreckte Form.

Wird der Docht zu lang, beginnt die Kerze zu rußen. Moderne Kerzen enthalten deshalb einen asymmetrisch geflochtenen Docht. Beim Brennen neigt er sich zur Seite und der obere Bereich verglüht (siehe glühende Dochtspitze im Bild).

In einer Stunde verbrennt eine Kerze ca. 3 - 8g Wachs und erzeugt eine Heizleistung von etwa 50 W.

Erforschung des Verbrennungsvorgangs II: Die Produkte der Verbrennung I

Bearbeiten

Nachdem wir uns nun mit den Bedingungen, Ausgangsstoffen und dem Vorgang der Verbrennung beschäftigt haben, wollen wir uns nun die Produkte näher ansehen. Damit wir diese besser untersuchen können, müssen wir uns in einem Vorversuch eine Nachweissubstanz (Kalkwasser) herstellen.

Herstellung von Kalkwasser (CO2 - Nachweis mit Kalkwasser)

Bearbeiten

Versuchsbeschreibung
Calciumoxid wird mit Wasser gemischt und durch Filtrieren gereinigt. Dabei entsteht Kalkwasser, welches zum Nachweis von Kohlenstoffdioxid dient. Um zu testen, dass es gut funktioniert, wird in einen kleinen Teil des Kalkwassers hinein geblasen.

Beobachtung
Schlussfolgerung
Es entsteht eine milchige Lösung → Ein Feststoff entsteht, der sich nicht richtig auflöst.
Nach dem Filtrieren entsteht eine klare Lösung. → Der Feststoff bleibt im Filter, das im Wasser bereits gelöste Calciumoxid läuft hindurch, da gelöste Stoffe viel kleiner sind und durch die Poren des Filters passen.
Beim Reinblasen trübt sich die klare Lösung. → Durch die Zugabe von Kohlenstoffdioxid trübt sich Kalkwasser. Es muss also ein neuer Stoff entstanden sein, welcher in Wasser unlöslich ist. Dieser Stoff ist Kalk, der als Feststoff ausfällt und auch für die Trübung sorgt.
Kalkwasser + Kohlenstoffdioxid Kalk + Wasser + Energie
Wasserklares Kalkwasser ist ein Nachweismittel für Kohlenstoffdioxid. Bei Kontakt mit diesem wird es durch Kalkbildung milchig trüb.

Nachweis von CO2 als Verbrennungsprodukt

Bearbeiten
Wikipedia hat einen Artikel zum Thema:


Versuchsbeschreibung
Nun kommen wir zum eigentlichen Versuch. Wir untersuchen die Gase, die bei der Verbrennung von Kerzenwachs entstehen. Das Hauptproblem musst Du allerdings noch selbst lösen: wie kann man Verbrennungsprodukte auffangen, um sie nachweisen? Entwickle eigene Ideen, wie man die Gase einer Kerze auffangen kann. Hast Du eine Möglichkeit gefunden, so füge den Gasen Kalkwasser zu.

Beobachtung
Kalkwasser trübt sich

Schlussfolgerung
bei der Verbrennung von Wachs entsteht Kohlenstoffdioxid.

Ein Verbrennungsprodukt der Kerze (und aller anderen Kohlenstoffverbindungen auch) ist Kohlenstoffdioxid CO2.
Hinweise
Wikipedia hat einen Artikel zum Thema:


  • Wenn zu wenig Sauerstoff bei der Verbrennung vorhanden ist, kann Kohlenstoffmonooxid CO entstehen. Dieses ist ein sehr giftiges Gas.
  • Da Kohlenstoffdioxid nicht mehr verbrennen kann, ist es ein hervorragendes Löschmittel. In Feuerlöschern findest Du es oft an Schaum gebunden.

Verbrennen von Nicht-Metallen (in reinem Sauerstoff)

Bearbeiten

Versuchsbeschreibung
Der Lehrer zeigt Dir einige besondere Versuche. Er verbrennt Schwefel, Phosphor und Kohlenstoff (für Kohlenstoff nimmt man kohlenstoffhaltige Verbindungen wie z. B.: eine Kerze, eine Zigarette, ein Holzspan, Papier usw...) in reinem Sauerstoff:

Kohlenstoff + Sauerstoff Kohlenstoffoxid + Energie
Schwefel + Sauerstoff Schwefeloxid + Energie
Phosphor + Sauerstoff Phosphoroxid + Energie

Was haben alle Versuche gemeinsam?

Bei der Verbrennung von Nichtmetallen entstehen Nichtmetalloxide. Sie bilden sich durch die Vereinigung von Nichtmetall mit Sauerstoff.
Wiederholung: Die Vereinigung eines Stoffes mit Sauerstoff wird Oxidation genannt.

Kohlenstoffdioxid[1] ist nicht das einzig mögliche Produkt. Ist für die Verbrennung von Kohlenstoff nicht genügend Sauerstoff vorhanden, so entsteht auch das giftige Kohlenmonoxid.

Aufgaben

Bearbeiten
  1. Um welchen Faktor verbrennen die Stoffe in reinem Sauerstoff schneller als in Luft?
  2. Erkläre den Begriff Nichtmetalloxid.
  3. Ordne den drei  Aggregatzuständen dir bekannte Nichtmetalloxide zu.
  4. Informiere Dich über den Stoff Kohlenmonooxid und seine Gefahren.
  5. Weißt Du auch, warum Kohlenmonooxid so gefährlich ist?

Verbrennen von Metallen

Bearbeiten

Nachdem wir uns mit den Nichtmetallen und ihren Oxiden beschäftigt haben, steht noch die Frage offen, was mit den Metallen passiert, denn das Verbrennen von Metallen entspricht ja meistens nicht den Erfahrungen der Schüler!

Zur Demonstration verbrennt der Lehrer Eisen, Aluminium und Magnesium in reinem Sauerstoff. Du wirst schöne, vielleicht sogar Dir bekannte Effekte beobachten können.

Eisen + Sauerstoff Eisenoxid + Energie
Aluminium + Sauerstoff Aluminiumoxid + Energie
Magnesium + Sauerstoff Magnesiumoxid + Energie


Bei der Verbrennung von Metallen entstehen Metalloxide. Sie bilden sich durch die Vereinigung von Metall mit Sauerstoff.

Aufgaben

Bearbeiten
  1. Erkläre den Begriff „Metalloxid“ mit Deinen eigene Worten.
  2. Lies im Buch oder im Internet über die Verwendung von  Metalloxiden nach (achte dabei besonders auf die Verwendung zum Färben von Keramik und Ton usw.).
  3. Informiere Dich dann über die negativen Seiten von Metalloxiden. Ein gutes Stichwort für Deine Suche ist  Korrosion,  Korrosionsschutz oder auch  Rost.

Verzweifle aber nicht an der Schwierigkeit! Korrosion ist ein komplexes Thema. Viele der chemischen Reaktionen sind noch zu schwer für Deinen momentanen Wissensstand.

Die Entzündungstemperatur

Bearbeiten

Sauerstoff und der Brennstoff reagieren erst miteinander, wenn die „Bedingungen“ günstig sind. Zu diesen Bedingungen gehört auch eine bestimmte Temperatur. Das ist schon daraus leicht verständlich, da ein Feuer beim Löschen ausgeht, wenn man Wasser darüber gießt. (Wasser kühlt den Brennstoff ab).

Versuchsbeschreibung

In einem Tiegel wird eine kleine Menge Kerzenwachs mit dem Bunsenbrenner solange erhitzt, bis eine Flamme entsteht

Beobachtung

Zuerst bildet sich Wachsdampf, der immer dunkler sowie dichter wird und der sich schließlich von selbst entzündet. Selbst nach dem Löschen durch Ersticken entzündet sich alles oft von selbst wieder.

Schlussfolgerung

Auch ohne dass heißes Wachs mit einer Flamme in Berührung kommt, entzündet es sich bei ca. 250°C. Dazu ist nicht unbedingt ein Funken nötig. Das Löschen von solchen Feuern ist sehr schwierig, da sie sich jederzeit wieder von selbst entzünden können.

Die Entzündungstemperatur (auch Zündtemperatur) ist die Temperatur eines Stoffes, bei der er sich ohne Fremdeinwirkung von selbst entzündet.

An einer offenen Flamme ist die Entzündungstemperatur immer vorhanden, aber auch durch Funken oder heiße Gegenstände kann eine Zündung ausgelöst werden.

Wichtig: Flüssige Brennstoffe, die sehr leicht Gase oder Dämpfe bilden, entzünden sich viel schneller als feste Brennstoffe. Sie sind deshalb feuergefährlich (z. B. Benzin).
→ Wenn die Brennstoffe schon gasförmig sind, genügt oft ein Funke, um sie zu entzünden.

Hier einige Beispiele für Temperaturen, bei denen sich Stoff von selbst entzünden:

Brennstoff Entzündungstemperatur [°C] Brennstoff Entzündungstemperatur [°C]
Phosphor weiß 60 Fichtenholz 280
Streichholzkopf ca. 60 Fett 300
Zündholzkopf 80 Holzkohle 300
Holzkohle 150 - 220 Phosphor rot 300
Ether 170 trockenes Holz ca. 300
Zeitungspapier 175 Petroleum 300
Stearin 196 Kork 300-320
Kunststoffe 200 - 300 Steinkohle 350 - 600
Benzin 220 - 300 Schreibpapier 360
Terpentin 220 Butan (Flüssiggas für Feuerzeuge) 400
Torf 230 Asphalt ca. 400
Schwefel 250 Glycerin 400
Paraffin (=Kerzenwachs) 250 Zucker 410
Benzin (Auto) ca. 250 - 460 Spiritus 425
Dieselöl 250 - 350 Ethanol 425
Heizöl 250 Baumwolle 450
Papier ca. 250 Methanol 455
Kohle 240-280 Propangas 460
Stroh 250-300 Essig (-säure) 460
Getreide 250-320 Roggenmehl 500
Heu 260-310 Schmieröl 500
Benzin (rein) 250 Methan (=Erdgas) ca. 600
Weizenstaub 270 Aceton 600
Holz 280-340 Teer 600

Weitere Beispiele findest du unter  hier.

Übung zur Entzündungstemperatur

Bearbeiten

Du kannst im Unterricht die Erstaunlichkeit der Zündtemperatur leicht überprüfen.

Versuchsbeschreibung
Falte ein kleines Blatt als Trichter und durchstoße es mit einer oder zwei langen Metallnadeln im oberen Viertel. Fülle den Trichter bis 1 cm vor die Einstichstellen mit Wasser und stelle darunter eine brennende Kerze.

Erforschen des Verbrennungsvorgangs
Erforschen des Verbrennungsvorgangs

Was passiert wohl? Die meisten Schüler vermuten hier Entzündung des Papiers und Auslaufen des Wassers, wobei das auslaufende Wasser die Kerze löscht. Aber, wie heiß kann Papier denn werden, wenn sich darin Wasser befindet?

Beobachtung
Das Papier wird schwarz, das Wasser wird warm und beginnt evtl. zu kochen

Schlussfolgerung
Papier hat Entzündungstemperatur von 250°C. Solange Wasser in dem Papier ist, kann seine Temperatur nicht >100°C sein. Deshalb kann das Papier sich nicht entzünden, da es vom Wasser gekühlt wird.

Stoffe, die eine Temperatur unterhalb der Entzündungstemperatur haben, können nicht entzündet werden.
Für eine Verbrennung werden also immer 3 Dinge benötigt[2]
  • ein brennbarer Stoff, z. B. Papier, Holz, Kohle, Benzin, Spiritus, Heizöl, Erdgas.
  • Sauerstoff
  • Entzündungstemperatur.

Aufgaben

Bearbeiten
  1. Bei einem Waldbrand fliegen mit Wasser beladene Hubschrauber über das Feuer und werfen das Wasser ab. Was verspricht sich die Feuerwehr davon?
  2. Warum kann ein Wald, der auf solche Art gelöscht wurde jederzeit wieder anfangen zu brennen?
  3. Welche Rolle spielt eigentlich Wind beim Wiederentfachen eines Waldbrandes?
  4. Welchem Einfluss hat die Form eines Holzstücks auf seine Entzündung am Lagerfeuer? (Vergleiche dazu einen Ast und einen Baumstamm)

Verschiedene Formen der Oxidation

Bearbeiten

Du weißt nun schon sehr vieles über Verbrennungen. Zum Beispiel weißt Du, dass es immer Oxidationen sind. Es gibt aber drei verschiedene Arten von Oxidationen. Die „Stille Oxidation“, die Verbrennung und die explosionsartige Oxidation. Hier lernst Du sozusagen die „Geschwister“ der Verbrennung kennen.

Stille Oxidation (langsam)

Bearbeiten
Erforschen des Verbrennungsvorgangs3
Erforschen des Verbrennungsvorgangs3

Versuchsbeschreibung
Stahlwolle befeuchten und in ein Reagenzglas stecken, welches auf den Kopf stehend in ein Wasserglas gestellt wird

Beobachtung

  • Wasser steigt im Reagenzglas nach oben
  • Eisenwolle verfärbt sich rotbraun
  • Glimmspan erlischt im Restgas

Schlussfolgerung

Es hat sich offensichtlich, durch den Sauerstoff und die Luftfeuchtigkeit in dem Reagenzglas Rost gebildet. Der korrekte Ausdruck dafür ist Eisenoxid. Es fand also eine Oxidation statt, ohne dass eine Flamme zu sehen war.

Sauerstoff + Eisen Eisenoxid + Energie (=Rostvorgang)
Langsam verlaufende Reaktionen mit Sauerstoff nennt man stille Oxidationen.

Weitere Beispiele für stille Oxidationen: Rosten, matt werden von Kupfer,  Zellatmung

Zusatzinformation

Durch die stille Oxidation von Eisen (= Rosten, =Korrosion) entstehen dem Staat jährlich Schäden von mehr als 50 Mrd. Euro. Der Hauptteil des Schadens entsteht durch rostende Autos, Brücken, Leitplanken und Bauwerke. Man kann Eisen aber veredeln, so dass es nicht mehr so stark korrodiert. Durch Zusätze von anderen Metallen, wie Nickel und Entzug von Kohlenstoffresten, die sich bei der Herstellung eingeschlichen haben, wird die Qualität viel besser. Eisen, welches so bearbeitet wurde nennt man  Stahl.

Verbrennung (mittelschnell)

Bearbeiten

Da Du Verbrennungen nun schon gut kennst, kommt hier nur eine kleine Zusammenfassung:

Die Verbrennung ist eine unter Licht und Wärmeentwicklung rasch ablaufende Oxidation. Das Leuchten wird durch glühenden Feststoff hervorgerufen.

Im Unterricht hast Du schon z. B. Phosphor, Kerzenwachs, Holz, Papier, Schwefel und Metalle verbrannt. Zur  Verbrennung gibt es auch einen Wikipedia Artikel.

3. Explosionsartige Oxidationen (sehr schnell)

Bearbeiten

Explosionen kennst Du von Silvester. Die Explosion ist eine Reaktion, die durch die Zündung fein verteilter Brennstoffe zustande kommt. Die Folge ist eine sehr schnelle, plötzlich verlaufende Kraftentfaltung, die auf dem Ausdehnungsbestreben von plötzlich erhitzten Gasen und Dämpfen beruht.

Versuchsbeschreibung
Der Lehrer zeigt Dir die Entzündung von Bärlappsporen.

width=30% ! Beobachtung
Schlussfolgerung
Explosion mit Stichflamme Die Bärlappsporen werden von der Kerzenflamme entzündet. Sie oxidieren explosionsartig.
Die Oberflächenvergrößerung führt zu einer größeren Zahl an reaktionsbereiten Teilchen. Die Reaktionsgeschwindigkeit kann dabei so groß werden, dass es zur Explosion kommt.

Zusatzinfos: Mehlstaubexplosionen in Mühlen

Bearbeiten
Wikipedia hat einen Artikel zum Thema:


Gemische aus Staub und Luft sind explosionsfähig, wenn sie aus brennbaren organischen oder anorganischen Stäuben wie z. B. Kohle-, Mehl-, Holz-, Kakao-, Kaffee-, Stärke-, Aluminium- oder Cellulosestaub bestehen. Entscheidend für die Zündfähigkeit ist der Sauerstoffanteil in der Luft und der Zerteilungsgrad des Brennstoffes. Ein Funke kann für die Zündung ausreichen. Besonders gefährlich ist dies in Mühlen, da dort immer etwas Mehlstaub aufgewirbelt wird. Ein Funke reicht aus um unter Umständen eine schreckliche Explosion herbeizuführen.

So kam es am 6.2.1979 in der Rolandmühle in Bremen zur größten Mehlstaubexplosion Deutschlands. Es starben 14 Menschen und 18 weitere wurden verletzt. Der Schaden an der Mühle und den Nachbarhäusern betrug etwa 50 Millionen Euro.

Zusammenfassung

Du kennst nun drei Arten von Oxidationen:

  • die langsame stille Oxidation
  • die mittelschnelle Verbrennung
  • die sehr schnelle Explosion

Aufgaben

Bearbeiten
  1. Kann man stille Oxidationen beobachten?
  2. Was denkst Du, warum Explosionen im Chemieunterricht als sehr gefährlich betrachtet werden und warum alle explosiven Stoffe Sicherheitsschilder tragen müssen?
  3. Der Verkauf von Silvesterknallern aus osteuropäischen Ländern ist zum Teil in Deutschland verboten, was meinst Du, warum das so ist?
  4. Bei der Oxidation von Eisen wird Energie frei. Unterschieden sich die Energiebeträge bei den drei Oxidationsformen? Vergleiche dazu die Verbrennung von etwas Eisen mit der gleichen Menge an rostendem Eisen (z. B. am Fahrrad).
  5. Informiere Dich zu den Konsequenzen der täglich Millionenfachen Verbrennungen auf unserem Planeten. Gute Suchbegriffe sind:  Luftverschmutzung,  Treibhauseffekt,  Ozonloch,  Smog

Gesetz von der Erhaltung der Masse und der Energie

Bearbeiten

Massenerhaltung

Bearbeiten

Was geschieht mit der Masse der Reaktionsteilnehmer bei einer chemischen Reaktion?

Erforschen des Verbrennungsvorgangs6
Erforschen des Verbrennungsvorgangs6

Versuchsbeschreibung
In einen Rundkolben werden Streichholzspitzen gefüllt. Er wird mit einem Luftballon geschlossen und gewogen.

Beobachtung
Luftballon dehnt sich aus und zieht sich wieder zusammen

  • Zu Beginn der Reaktion: mA = 50,41 g
  • Am Ende der Reaktion: mE = 50,41 g

Schlussfolgerung
Das Gas dehnt sich bei Erwärmung aus und kontrahiert beim Abkühlen.


→ Die Gesamtmasse der Reaktionspartner hat sich nicht geändert.

 Antoine Lavoisier (1743 - 1794): Gesetz von der Erhaltung der Masse:

Rien ne se perd, rien ne se crée

Die Gesamtmasse ändert sich bei chemischen Reaktionen (im Rahmen der Messgenauigkeiten) nicht.

MasseAusgangsstoffe=MasseProdukte

Energieerhaltung

Bearbeiten

 Albert Einstein (14.3. 1879 - 18.4.1955):


Umwandlung von Energie in Masse und von Masse in Energie ist möglich.


(c = Lichtgeschwindigkeit = 300.000 km/s)


Bei einer chemischen Reaktion ist die Summe aus Masse und Energie der Ausgangsstoffe gleich der Summe aus Masse und Energie der Endstoffe.


Wird Energie frei, tritt ein unwägbar kleiner Massenverlust auf. Wird Energie investiert, tritt Massenzunahme auf. Dieses kann allerdings mit herkömmlichen Waagen nicht gemessen werden.


Energieerhaltung bei chemischen Reaktionen

Bearbeiten

Diesen Sachverhalt kennt man auch als  1. Hauptsatz der Thermodynamik.

Theoretische Vorstellung

Versuchsbeschreibung
Nasses CaO wird getrocknet. Anschließend wird wieder Wasser zugegeben.

Beobachtung
Es wird Energie zum Entfernen des Wassers benötigt. Die Zugabe von Wasser setzt Energie frei.

Versuchsbeschreibung
Wasser, CaO und Becherglas und Thermometer werden gewogen. Dann wird das Wasser zugegeben. Die Temperatur steigt.

Woher stammt die freiwerdende Energie (Temperatur)?

Einstein: . Wenn c eine Konstante ist und nach dem ersten Gesetz die Masse sich nicht ändert, so muss auch die Gesamtenergie bei chemischen Reaktionen unverändert bleiben

→ Wenn Benzin verbrennt und Energie frei wird, muss sie schon vorher enthalten sein.

→ Diese Energie nennt man innere Energie.

Hier sind einige Aufgaben zur Überprüfung Deines Wissens

Bearbeiten
  1. Was brennt eigentlich, wenn du eine Kerze angezündet hast? Beschreibe, welche Aufgabe der Docht hat.
  2. Die folgenden Sätze beschreiben, was beim Anzünden einer Kerze geschieht. Leider sind sie durcheinander geraten. Wie muss die richtige Reihenfolge lauten?
    a) Am Docht befindet sich festes Wachs. Es brennt nicht.
    b) Der Wachsdampf entzündet sich und beginnt zu brennen.
    c) Das flüssige Wachs steigt im Docht nach oben (ähnlich wie Tinte im Löschpapier).
    d) Der Wachsdampf erreicht seine Entzündungstemperatur.
    e) Wenn man eine Streichholzflamme an den Docht hält, wird das Wachs erhitzt und schmilzt.
    f) Das Wachs beginnt zu sieden und verdampft.
  3. Vergleiche die Flammen von Brenner und Kerze.
  4. Es müssen drei Voraussetzungen erfüllt sein, damit etwas brennt. Schreibe sie auf.
  5. Beim Gas genügt ein kleiner Funke, um es zu entzünden. Dazu reicht ein leeres Feuerzeug, welches selbst kein Gas mehr enthält.
  6. Könntest du auch eine Kerze mit einem leeren Feuerzeug entzünden? Begründe.
  7. Manche Stoffe dürfen nur in einem heißen Wasserbad erhitzt werden. Welche Stoffe könnten das deiner Meinung nach sein? Begründe Deine Meinung.
  8. Stelle die Reaktionsgleichung der Verbrennung von a) Schwefel, b) Kohlenstoff, c) einem beliebigem Metall auf
  9. Wozu dient Kalkwasser? Wie stellt man es her?
  10. Schlage einen Versuchsaufbau vor, der beweist, dass man Kohlenstoffdioxid ausatmet.
  11. Was ist eine Oxidation? Nenne die verschiedenen drei Formen der Oxidation? Kann man stille Oxidationen beobachten?
  12. Was denkst Du, warum Explosionen im Chemieunterricht als sehr gefährlich betrachtet werden und warum alle explosiven Stoffe Sicherheitsschilder tragen müssen?
  13. Der Verkauf von Silvesterknaller aus osteuropäischen Ländern ist zum Teil in Deutschland verboten, was meinst Du warum das so ist?
  14. Informiere Dich zu den Konsequenzen der täglich millionenfachen Verbrennungen auf unserem Planeten. Gute Suchbegriffe sind Luftverschmutzung, Treibhauseffekt, Ozonloch, Smog.
  15. Um welchen Faktor verbrennen Stoffe in reinem Sauerstoff schneller als in Luft? Nenne Beispiele aus dem UR.
  16. Erkläre den Begriff Nichtmetalloxid und ordne den drei Aggregatzuständen dir bekannte Nichtmetalloxide zu.
  17. Informiere dich über den Stoff Kohlenmonoxid und seine Gefahren.
  18. Was ist der Unterschied zwischen Sauerstoff und Luft? Wie kann man entstehenden Sauerstoff nachweisen?
  19. Ist Luft ein Element? Schlage einen Versuchsaufbau vor, mit dem dies gezeigt werden kann.
  20. Verbrennt ein Stückchen Kohle schneller in Luft, Stickstoff oder reinem Sauerstoff?
  21. Bei einem Waldbrand fliegen mit Wasser beladene Hubschrauber über das Feuer und werfen das Wasser ab. Was verspricht sich die Feuerwehr davon? Warum kann ein Wald, der auf solche Art gelöscht wurde jederzeit wieder anfangen zu brennen? Welche Rolle spielt eigentlich Wind beim wieder entfachen eines Waldbrandes?
  22. Was versteht man unter der Entzündungstemperatur? Nenne ein Beispiel, wo die Entzündungstemperatur eine wichtige Rolle spielt
  23. Welchem Einfluss hat die Form eines Holzstücks auf seine Entzündung am Lagerfeuer? (Vergleiche dazu einen Ast und einen Baumstamm)
  24. Ein Schüler sagt: „eine Verbrennung ist eine Oxidation, aber nicht jede Oxidation ist eine Verbrennung“. Hat der Schüler damit recht?
  25. Ordne die folgenden Stoffe nach ihrer Entzündungstemperatur: Streichholz, Benzindampf, Holzkohle, Stroh. Was ist ein Metalloxid? Erkläre und nenne drei Beispiele (Was ist ein Nichtmetalloxid?)
  26. Wozu verwendet man Metalloxide?
  27. Ist die Verbrennung von Kupfer eine Oxidation? Begründe Deine Meinung.
  28. Erkläre den Unterschied zwischen Element und Verbindung.
  29. Erkläre die Vereinigung von Eisen und Schwefel und die Zersetzung von Quecksilberoxid.
  30. Auf dem Herd hat eine Bratpfanne angefangen zu brennen. Was ist passiert? Wie kann sie gelöscht werden?
  31. In einem Grill brennt Grillkohle. Liegt eine chemische Reaktion vor? Begründe Deine Meinung und stelle die Reaktionsgleichung auf.
  32. Erforschen des Verbrennungsvorgangs
    Erforschen des Verbrennungsvorgangs
    In einem mit Wasser gefüllten Becherglas steht ein Reagenzglas mit der Öffnung nach unten. Es enthält feuchte Eisenwolle. Lässt man den Versuch zwei Tage stehen, steigt das Wasser im Reagenzglas an. Erkläre, warum und um wie viel Prozent das Wasser steigt.

  1. zur Erklärung di = zwei/ mono = eins
  2. Später wirst Du lernen, dass auch der so genannte Zerteilungsgrad eine Rolle spielt.

Säuren und Laugen

Bearbeiten

Säuren und Laugen

Bearbeiten

Was sind Säuren und Laugen?

Bearbeiten
  • Die erste Säure, die man schon im Altertum kannte, war Essig. Im Mittelalter waren weitere Säuren bekannt (zum Beispiel Salz-, Salpeter- und Schwefelsäure).
  • Salzsäure und Essigsäure kann man am Geruch erkennen, jedoch wird von einer Geruchsprobe dringend abgeraten!
  • Die Wirkung der Säuren: Säuren ätzen! Sie greifen besonders unedle Metalle und Kalk an. Aber auch Kleidung und die Haut sind bei Kontakt in Gefahr.
  • Die „Gegenspieler der Säuren“ sind die Laugen. Sie sind ebenfalls ätzend und greifen viele andere Stoffe an, die von Säuren nicht unbedingt stark angegriffen werden (zum Beispiel Haare, Haut und Fett).
  • Natriumhydroxid-Lösung und Kaliumhydroxid-Lösung sind bekannte Laugen.
  • Laugen sind genauso gefährlich, nur etwas weniger bekannt als Säuren. Sie greifen viele natürliche Stoffe an, aber i. A. keine Metalle - eine Ausnahme ist Aluminium. Deshalb entfernt ein Abflussreiniger, wie zum Beispiel „Abflussfrei“ auch Haare und Fette, aber schädigt die Rohre nicht.
  • Säure und Laugen kann man verdünnen. Gibt man zu Säure die gleiche Menge (oder mehr) Wasser hinzu, so ist die Wirkung deutlich schwächer
  • Vorsicht! Verätzungen können immer passieren. Am besten die Stelle sofort mit Wasser abspülen. Verätzte Kleidung muss ausgezogen werden. Wenn etwas in die Augen kommt: gut auswaschen und sofort zum Arzt!
  • Laugen liegen oft als Feststoff vor, den man noch in Wasser auflösen muss.
  • Es ist ein weit verbreitetes Vorurteil, dass Säuren und Laugen immer Flüssigkeiten sind. Wahr ist vielmehr, dass es auch bei Raumtemperatur feste und gasförmige Säuren gibt. Ein bekannter Vertreter einer festen Säure ist das Vitamin C Pulver (Vorsicht, es greift die Zähne an, wenn es nicht mit viel Wasser verdünnt ist). Eine typisch gasförmige Säure ist die Chlorwasserstoffsäure (HCl).
Der Mensch kann den Säuregrad einer verdünnten Lösung nicht wahrnehmen, deshalb brauchen wir im Labor ein Hilfsmittel um den Säuregrad zu bestimmen ⇒ Indikatoren

Indikatoren

Bearbeiten
Wikipedia hat einen Artikel zum Thema:

Indikatoren sind Farbstoffe, die in Säuren und Laugen jeweils eine andere Farbe zeigen. In der Schule wird meist nur  Universalindikator benutzt.

Aufgaben

Bearbeiten
  1. Was passiert wohl, wenn man die saure Universalindikatorlösung mit der neutralen zusammenkippt? Welche Farbe wird sich zeigen?
  2. Warum passiert das ?
  3. Lies im Internet über die Eigenschaften und die Verwendung der wichtigsten Säuren nach!

Wichtige Säuren

Bearbeiten

Eine Auswahl wichtiger Säuren zur Recherche bei Wikipedia:  Schwefelsäure,  Salzsäure,  Phosphorsäure,  Salpetersäure,  Kohlensäure,  Essigsäure,  Zitronensäure

Bei Säuren wird das Wasserstoffatom H rot gefärbt ( Säuren haben den sauren Wasserstoff).
Bei Laugen wird die  Hydroxylgruppe OH blau gefärbt ( Laugen sind wässrige Hydroxidlösungen).

Hier sind die wichtigsten Säuren und ihre Säurereste, Du solltest sie auswendig wissen!

Die wichtigsten Säuren und ihre Säurereste
Säure Säurerest
HF Fluorwasserstoff(säure) F- Fluorid
HCl Chlorwasserstoff(säure) Cl- Chlorid
HBr Bromwasserstoff(säure) Br- Bromid
HI Iodwasserstoff(säure) I- Iodid
H2S Schwefelwasserstoff(säure) S2- Sulfid
       
HNO3 Salpetersäure NO3- Nitrat
H2SO4 Schwefelsäure SO42-

Sulfat

H2CO3 Kohlen(stoff)säure CO32- Carbonat
H3PO4 Phosphorsäure PO43-

Phosphat

       
HNO2 Salpetrigesäure NO2- Nitrit
H2SO3 Schwefligesäure SO3- Sulfit
H3PO3 Phosphorigesäure PO3- Phosphit


Hier folgen die wichtigsten Laugen in der Anorganik. Du solltest sie kennen.

Die wichtigsten Laugen
Lauge
NaOH Natriumlauge
KOH Kaliumlauge
Ca(OH)2 Calciumlauge = Kalkwasser
Hinweise
  • statt Natriumlauge sagt man Natronlauge.
  • statt Kaliumlauge sagt man Kalilauge.
Schreibweisen des Hydroxidions
Häufig genutzte Schreibweisen für Hydroxidionen (ohne Darstellung der freien Elektronenpaare).
Schreibweisen für Hydroxidionen einschließlich der sechs freien Elektronen (Punkte) bzw. drei Elektronenpaare (Striche) am Sauerstoffatom (hier jeweils blau markiert).

Definitionen nach Svante Arrhenius (1859-1927)

Bearbeiten
Der Chemiker Svante Arrhenius

 Svante Arrhenius wurde am 19. 2.1859 in Uppsala geboren und starb am 2.10.1927 in Stockholm. Der schwedische Physiker und Chemiker forschte auf dem Gebiet der elektrolytischen Dissoziation (z.B. dem Zerfall von Salzen und Säuren in Wasser). In seiner Doktorarbeit beschäftigte er sich mit der Leitfähigkeit von Salz- und Säurelösungen. Sie wurde jedoch wegen der vielen neuen Ideen der damaligen Zeit bei anderen Chemikern nicht anerkannt. Erst als der  Chemiker Ostwald sich positiv dazu äußerte, wurde der Wert seiner Forschungen erkannt.

Er erforschte auch den Einfluss des Kohlenstoffdioxids für das Klima der Erde und untersuchte als erster den  Treibhauseffekt. 1903 erhielt Svante Arrhenius als erster Schwede den Nobelpreis für Chemie.

Er stellte für Säuren folgende Definition auf
Die wässrigen Lösungen von Hydroxiden bezeichnet man als Laugen. Eine Säure ist ein Stoff, der in wässriger Lösung Wasserstoffionen bildet.
(In der 8. Klasse sagen wir statt „Wasserstoff - Ionen“ besser „Protonen“)

Reaktionen der Oxide mit Wasser I - Säurebildung in zwei Schritten

Bearbeiten

Ziel dieser beiden Versuche ist es, Schwefelsäure bzw. Kohlensäure herzustellen. Dazu wird das jeweilige Element in reinem Sauerstoff verbrannt. Es bilden sich so genannte Nichtmetalloxide.

Damit nichts von den entstehenden Oxiden verloren geht, finden beide Versuche in geschlossenen  Rundkolben statt.

Versuch 1: Verbrennen von Schwefel & Kohlenstoff mit reinem Sauerstoff
 
Versuchsaufbau Verbrennen von Schwefel im Rundkolben
Versuchsaufbau Verbrennen von Schwefel im Rundkolben
 
Verbrennen von Schwefel im Rundkolben
Verbrennen von Schwefel im Rundkolben
Beobachtung 1:
  • Schwefel verbrennt mit blauer Flamme
  • Rauchbildung
 
  • Kohle verbrennt
  • verglüht
Schlussfolgerung 1:
  • Entstehung von Schwefeldioxid

Schwefel + Sauerstoff Schwefeldioxid + E

 
  • Entstehung von Kohlenstoffdioxid

Kohlenstoff + Sauerstoff Kohlenstoffdioxid + E

Versuch 2 Im zweiten Schritt gibt man nun Wasser zu den neu entstandenen Oxiden. Wenn sich die Oxide in Wasser lösen, bildet sich Säure. Zum Beweis kann man anschließend einigen Tropfen Universalindikator zufügen.
 
Versuchsaufbau Lösen von Schwefeldioxid in Wasser und Einfärben mit Universalindikator im Rundkolben
Versuchsaufbau Lösen von Schwefeldioxid in Wasser und Einfärben mit Universalindikator im Rundkolben
 
Versuchsaufbau Lösen von Schwefeldioxid in Wasser und Einfärben im Rundkolben
Versuchsaufbau Lösen von Schwefeldioxid in Wasser und Einfärben im Rundkolben
Beobachtung 2: starke Rotfärbung   geringe Rotfärbung
Schlussfolgerung 2:
  • Schwefeldioxid löst sich in Wasser und bildet Schweflige Säure

Schwefeldioxid + Wasser Schweflige Säure + E

 
  • Kohlendioxid löst sich in Wasser und bildet Kohlensäure

Kohlenstoffdioxid + Wasser „Kohlensäure“ + E

Nichtmetalloxide (z.B. Kohlenstoffdioxid) bilden mit Wasser eine Säure.

Aufgaben

Bearbeiten
  1. Das Wort Säure und alle Säuren sind zu unterstreichen, das Wort Nichtmetall und alle Nichtmetalle sind in einer anderen Farbe zu unterstreichen.
  2. Nenne 5 Nichtmetalle. Wie unterscheiden sie sich von den Metallen? Was unterscheidet Nichtmetalloxide von Nichtmetallen?
  3. Wie kann man eine Säure bilden?
  4. In Cola ist viel Phosphorsäure enthalten. Wie kann eine Getränkefirma  Phosphorsäure herstellen?
  5. Warum erlischt die Flamme im Rundkolben nicht sofort? Wie lange läuft die Verbrennung eigentlich?
  6. Ein Schüler schreibt im Test: Zum Herstellen von Schwefelsäure nimmt man Schwefel und mischt ihn mit Wasser. Warum ist das falsch?

Reaktionen der Oxide mit Wasser II - in zwei Schritten

Bearbeiten

 Metalloxide sind chemische Verbindungen eines Metalls mit Sauerstoff. Viele Metalloxide dienen als Erze zur Metallgewinnung. Dabei wird dem Metalloxid der Sauerstoff entzogen und so das reine Metall gewonnen. Metalle können auch wieder zu Metalloxiden reagieren. Ein weit verbreitetes Problem ist Rost (Eisenoxid), welcher aus wertvollem Eisen entsteht.

In diesem Versuch dienen die Metalloxide als Ausgangsstoff zur Laugenherstellung. Doch erst mal muss man aus dem Element ein solches Metalloxid herstellen:

Versuchsaufbau 1: Verbrennen von Magnesium über einem Becherglas
Beobachtung 1: Es entsteht eine helle, gleißende Flamme; weißer Feststoff (Rauch),
Schlussfolgerung 1: Es ist das weiße Pulver Magnesiumoxid entstanden

Magnesium + Sauerstoff Magnesiumoxid + Energie

Versuchsaufbau 2: Anschließend wird das Produkt mit Wasser gemischt
Beobachtung 2: Magnesiumoxid löst sich schlecht in Wasser, nach Zugabe des Wassers kann man Universalindikatorfarbe hinzugeben. Sie zeigt die Farbe blau.
Schlussfolgerung 2: Es ist Magnesiumlauge entstanden.

Magnesiumoxid + Wasser Magnesiumlauge + Energie

Wenn sich Metalloxide in Wasser lösen, reagieren sie mit Wasser zu Hydroxiden.
Die wässrigen Lösungen von Hydroxiden bezeichnet man als Laugen.

Aufgaben:

Bearbeiten
  1. Das Wort Metalloxid und alle Metalloxide sowie alle Laugen werden wieder unterstrichen.
  2. Was unterschiedet Metalloxide von Metallen?
  3. Wo findet man im  Periodensystem der Elemente die Metalle und wo die Nichtmetalle?
  4. Wozu werden Metalloxide verwendet?
  5. Beschreibe allgemein: Wie stellt man eine Lauge her?
  6. Was entsteht bei der Verbrennung von Natrium?
  7. Eine wichtige Lauge ist das so genannte  Kalkwasser. Der richtige Name ist Calciumhydroxid. Kannst Du beschreiben, wie man es herstellen kann?
  8. Wozu wird  Calciumoxid verwendet?

Der pH-Wert

Bearbeiten
Wikipedia hat einen Artikel zum Thema:

Die Wirkung einer Säure ist nicht immer gleich. Es gibt starke Säuren wie H2SO4 und schwache Säuren wie die Zitronensäure. Außerdem sind auch starke Säuren in ihrer Wirkung schwach, wenn man sie mit viel Wasser verdünnt. Das gilt entsprechend auch für Laugen. Um die Wirkung einer Säure oder Lauge beurteilen zu können, braucht man eine passende Maßeinheit.

→ Definition für die 8. und 9. Klasse: Der pH-Wert misst die Stärke der Wirkung von Säuren und Laugen, also wie sauer oder alkalisch eine Substanz reagiert.

Der pH-Wert wird mit einem Messgerät oder mit so genanntem Indikatorpapier gemessen. Auf dessen Farbskala findet man die Werte von 0-14. Den mittleren Wert (7) misst man bei neutralen Lösungen, wie z. B. reinem Wasser. Die Werte kleiner als 7 sind sauer (Säure), die Werte größer als 7 sind alkalisch (Lauge).

  • pH < 7 entspricht einer sauren Lösung
  • pH ≈ 7 entspricht einer neutralen Lösung
  • pH > 7 entspricht einer alkalischen Lösung

Hier einige Beispiele von pH-Werten bei Alltagsstoffen:

Das Besondere an der pH-Wert-Skala ist, dass der Unterschied zwischen einem pH-Wert und dem nächsten das 10-fache beträgt. Das bedeutet, dass z. B. eine Säure mit pH 2 zehnmal so sauer wie eine Säure mit pH 3 ist und hundertfach so sauer ist wie eine mit pH 4 ist.

Beachte, dass man das „p“ des pH-Werts klein schreibt!

Zusatzinformation

Aufgaben

Bearbeiten
  1. Was vermutest Du, warum man den Säuregrad überhaupt messen muss? Reicht nicht eine Bezeichnung wie sauer oder neutral aus?
  2. Warum sind Aquarienliebhaber so sehr am pH-Wert ihres Wasser interessiert?
  3. Mit der wievielfachen Menge Wasser muss man einen Liter Essig verdünnen, damit er nicht mehr sauer ist (pH ≈ 7)?

Säuren greifen unedle Metalle an

Bearbeiten
Versuchsaufbau Reaktion Metall und Säure
Versuchsaufbau Reaktion Metall und Säure

Magnesium

Bearbeiten

Versuchsbeschreibung
Magnesium wird mit verdünnter Salzsäure (HCl) gemischt

Beobachtung
Es entsteht ein brennbares Gas, das Mg löst sich auf und es bildet sich Energie in Form von Wärme (exotherme Reaktion).

Schlussfolgerung
Mg reagiert zu einem Salz und Wasserstoff

Magnesium + Salzsäure Wasserstoff + Magnesiumsalz + Energie
Mg + 2HCl H2 + MgCl2 + Energie

Versuchsbeschreibung
Der Versuch wird mit einem Centstück aus Kupfer wiederholt.

Beobachtung
keine Reaktion

Schlussfolgerung
Kupfer ist im Gegensatz zu Magnesium ein edleres Metall. Es wird von verdünnter Salzsäure nicht angegriffen.

Säurestärke

Bearbeiten

konzentrierte Säure

Bearbeiten

Versuchsbeschreibung
Mg-Band wird mit Essigsäure und mit konzentrierter HCl versetzt (Lehrerversuch!)

Beobachtung
Mit konzentrierter Salzsäure ist die Reaktion viel heftiger, brennbares Gas entsteht

Schlussfolgerung
HCl ist eine stärkere Säure, Essigsäure ist eine schwache Säure

Magnesium + Säure Salz + Wasserstoff + Energie

schwach konzentrierte Säure

Bearbeiten

Versuchsbeschreibung
Die Säure HCl wird mit viel Wasser verdünnt und in Mg eingeworfen. Der Versuch wird mit Essigsäure wiederholt

Beobachtung
Beide Reaktionen laufen ähnlich langsam ab

Schlussfolgerung
Man kann Säuren in ihrer Wirkung abschwächen. Man kann also starke Säuren mit Wasser verdünnen, ihre Wirkung ist dann weniger stark. Dennoch bleiben sie starke Säuren. (Vergleich mit schnellem Sportwagen, der in der Stadt auch langsam fährt)

Nicht alle Säuren sind gleich stark oder gleich ätzend.
Man unterscheidet grob gesagt zwischen starken und schwachen Säuren.
starke Säuren
Name Formel
Salzsäure HCl
Salpetersäure HNO3
 Flusssäure HF
Schwefelsäure H2SO4
mittelstarke Säuren
Phosphorsäure H3PO4
schwache Säuren
Name Formel
Kohlensäure H2CO3
Zitronensäure (E330) Diese Formeln sind leider noch zu kompliziert. Du lernst sie in den nächsten Jahren.
Essigsäure
 Ameisensäure
 Äpfelsäure (E296)
 Ascorbinsäure (E300)

Neutralisation

Bearbeiten

 Neutralisation ist die Reaktion zwischen Säuren und Basen. Dabei bildet sich Wasser. Die übrigen Ionen bilden ein Salz. Eine Säure und eine  Base. Die Neutralisation ist daher nicht gleichzusetzen mit dem Erreichen des Neutralpunktes, der dem pH-Wert 7 entspricht.

Demonstration von Universalindikator in drei Bechergläsern:

Bechergläser mit Universalindikator und Säure, Base und neutrale Lösung
Bechergläser mit Universalindikator und Säure, Base und neutrale Lösung


Gibt es eine Möglichkeit, Säuren unschädlich zu machen?

Versuchsbeschreibung
Zu Salzsäurelösung, die mit Universalindikator gefärbt ist, wird Natronlauge (=Natriumhydroxid in Wasser aufgelöst) zugetropft.

Beobachtung
Der Indikator färbt sich allmählich grün.

Schlussfolgerung
Salzsäure und Natronlauge haben zu Wasser reagiert.

Gibt man zu einer Lauge eine bestimmte Menge an Säure hinzu, so erhält man eine neutrale, nicht ätzende Flüssigkeit.
→ Lauge und Säure sind Gegenspieler. In gleicher Konzentration zusammengefügt, heben sie sich in ihrer Wirkung auf.

Bei der Neutralisation muss man folgendes beachten:

Bearbeiten
  • tropfenweise Zugabe, zum Beispiel mit einer  Pipette
  • ständiges Rühren
  • geduldig sein
  • aufpassen da Säuren und Laugen ätzend sind

Quantitative Neutralisation

Bearbeiten

Bei der Neutralisation entsteht ein weiterer Stoff neben Wasser. Um diesen zu sehen, muss eine Neutralisation durchgeführt und das Wasser eingedampft werden. Der Rückstand wird dann untersucht.
Nur, wie neutralisiert man ohne Indikator?

Versuchsbeschreibung
Zu 15 ml Natronlauge wird solange aus einer  Bürette Salzsäure zugetropft, bis es zum Farbumschlag kommt. Die Menge wird notiert. Der Versuch wird ohne Indikator wiederholt.

Beobachtung
Für 15 ml Natronlauge werden .... ml Salzsäure benötigt

Versuchsaufbau Titration
Versuchsaufbau Titration


Versuchsbeschreibung
Die neutrale Lösung (ohne Indikator) aus V1 wird eingedampft.

Beobachtung
Es bildet sich ein weißer Niederschlag, Dampf steigt auf

Schlussfolgerung
Natronlauge und Salzsäure haben zu Kochsalz und Wasser reagiert

NaOH + HCl H2O + NaCl + Energie
Allgemeine Regel für jede Neutralisation: Lauge + Säure reagieren zu Salz + Wasser + E
Das entstandene Salz ist in der Regel im Wasser aufgelöst und kann durch Eindampfen rein gewonnen werden.

Aufgaben

Bearbeiten
  1. Warum muss der Versuch zweimal durchgeführt werden?
  2. Was geben Ärzte zu trinken, wenn jemand versehentlich Säure getrunken hat?
  3. Viele Menschen leiden an  Sodbrennen, also dem Aufsteigen von einem Übermaß an Magensäure. Übliche Medikamente enthalten Calciumoxid. Kannst Du erklären warum?
  4. Kannst Du die Reaktionsgleichungen für folgende Neutralisationen erstellen?
    a) Natronlauge mit Schwefelsäure
    b) Kalilauge mit Phosphorsäure
    c) Kalkwasser mit Phosphorsäure
  5. Benenne die bei den Aufgaben entstehenden Salze

Rotkohl, der Indikator aus der Küche

Bearbeiten

In der Chemie versteht man unter einem Indikator einen Stoff, der zur Überwachung einer chemischen Reaktion beziehungsweise eines Zustandes dient. Häufig wird die Änderung durch eine Farbveränderung angezeigt.

Alltägliche Säure-Base-Indikatoren

Auch Rotkohlsaft kann als Säure-Lauge Indikator verwendet werden. Rotkohlsaft kann dabei Farben von rot = sauer bis blau = alkalisch annehmen (in noch alkalischerem Milieu wird er grün und bei pH>10 sogar gelb).

Um etwa Rotkohl aus Blaukraut zu erhalten wird deshalb häufig eine Apfelscheibe (mit Apfelsäure) zugegeben, wodurch sich das Blaukraut rot färbt. Die Benennung „Rotkohl“ und „Blaukraut“ ist übrigens regional verschieden, so werden beispielsweise im Süden Deutschlands auch schon die rohen Rotkohl-Köpfe als Blaukraut-Köpfe bezeichnet.

Teetrinker kennen Tee als Indikator: Wird dem Schwarztee Zitronensaft zugegeben, dann wechselt die Farbe von dunkelbraun auf hellrötlichbraun. Auch dieser Farbumschlag ist auf Farbstoffe im Tee zurückzuführen, die als Indikator wirken. Die Quelle ist  Indikator.

Probiere es einmal selbst: Nimm einen frischen Rotkohl und zerschneide ein bis zwei Blätter mit einer Schere oder einem Messer. Gib die für einige Minuten in ein Gefäß mit etwas Wasser. Besonders gute Ergebnisse erhältst Du, wenn Du heißes Wasser verwendest.

Mit der farbigen Lösung kann man dann durch Zugabe von Säure oder Lauge mindestens 5 verschiedene Farben herstellen.

Die Neutralisation ist eine exotherme Reaktion

Bearbeiten
Wikipedia hat einen Artikel zum Thema:

Versuchsbeschreibung
In ein großes, senkrecht eingespanntes Reagenzglas gibt man 5ml 5%-10% HCl, dann gibt man in kleinen Portionen konzentrierte NaOH(aq) hinzu. Die Temperatur wird mit einem Thermometer gemessen.

Beobachtung
Unter heftigem Aufwallen, Hitze und Geräuschentwicklung reagieren beide Substanzen miteinander. Am Boden setzt sich ein weißer Stoff ab.

Schlussfolgerung

Es bilden sich Kochsalz und Wasser. Die Neutralisation setzt große Energien frei. Solche Reaktionen nennt man

exotherme Reaktionen

.

Wiederholungsfragen

Bearbeiten
  1. Nenne 5 Säuren und 3 Laugen mit ihrer Formel. Stelle dann die Reaktionsgleichung einer beliebigen Neutralisation auf!
  2. In Cola ist viel Phosphorsäure enthalten.
    a) Wie kann eine Getränkefirma Phosphorsäure herstellen?
    b) Stelle die Reaktionsgleichungen dazu auf!
    c) Wie kann diese Säure unschädlich gemacht werden? Beschreibe genau, wie man dazu vorgehen muss!
  3. Schwefeloxid wird mit Wasser vermischt. Stelle die Reaktionsgleichung auf!
  4. Stelle die Reaktionsgleichung der Verbrennung von Magnesium auf
    a) Erkläre an diesem Beispiel die Begriffe Oxidation und Metalloxid!
    b) Welche Farbe zeigt der Universalindikator, wenn man das Produkt mit Wasser mischt?
  5. Wissenschaftler haben festgestellt, dass Regenwasser auch Säuren enthält. In den letzten Jahren hat man nun beobachtet, dass vor allem in Gebieten mit starkem Autoverkehr der Regen besonders sauer ist. Besteht da ein Zusammenhang? (Tipp: In Benzin sind Kohlenstoff und Schwefel enthalten)
  6. Was ist der pH-Wert?
  7. Was vermutest Du, warum man den Säuregrad überhaupt messen muss? Reicht nicht eine Bezeichnung wie sauer oder neutral aus?
  8. Warum kann eine starke Säure auch manchmal schwach wirken? Vergleiche mit einem starken Sportwagen, der in einer 30er Zone fährt.
  9. Warum sind Aquarienliebhaber so sehr am pH-Wert ihres Wasser interessiert?
  10. Mit der wievielfachen Menge Wasser muss man 1L Essig verdünnen, damit er nicht mehr sauer ist (pH=7)?
  11. Was ist eine „Neutralisation“?
    a) Beschreibe eine Versuchsdurchführung und stelle Beobachtung und Schlussfolgerung auf (mit Reaktionsgleichung!)
    b) Stelle die Reaktionsgleichung der Neutralisation von Phosphorsäure mit Kalilauge auf!
  12. Ein Bauarbeiter arbeitet beim Anrühren des Zementes ohne Handschuhe. Dazu verwendet er so genannten „gebrannten Kalk“ (CaO). Nach einigen Wochen sind seine Hände stark angegriffen, eingerissen und rötlich. Finde eine Erklärung!

Wasser, Lösungen und die Teilchentheorie

Bearbeiten

Stoffe bestehen aus winzigen Teilchen, die „Atome“ genannt werden

Bearbeiten

Wasser ist für den Menschen die wichtigste Verbindung überhaupt. In diesem Kapitel wirst Du vieles über Wasser und Lösungsvorgänge lernen, denn schließlich sind im Wasser fast immer Salze aufgelöst. Außerdem lernst Du die Atome kennen und auch noch mehr über Trennungen und Trennungsvorgänge - denn auch dort spielt Wasser oft eine Rolle.

Lösen von Stoffen

Bearbeiten

Versuchsbeschreibung

In zwei große Bechergläser werden jeweils warmes und kaltes Wasser gegeben. Dann wird je ein Kristall  Kaliumpermanganat (ein Salz) zugefügt und etwa 60 min beobachtet. Kaliumpermanganat dient nur als kristalliner Farbstoff. Die beiden  Bechergläser dürfen nicht berührt werden, es darf zu keinen Erschütterungen kommen.

Beobachtung

Im kalten Wasser verteilt sich der Farbstoff langsam, im warmen sehr schnell. Nach etwa 60 min hat sich der Farbstoff in beiden Bechergläsern gleich gut verteilt.

Versuchsaufbau zur Bestimmung der Geschwindigkeit der Verteilung von Kaliumpermanganat im warmen und kalten Wasser
Versuchsaufbau zur Bestimmung der Geschwindigkeit der Verteilung von Kaliumpermanganat im warmen und kalten Wasser

Schlussfolgerung

1. Lösen des Salzes

Durch das Wasser zerfällt der Salzkristall in winzig kleine Teilchen. Es ist eine Lösung entstanden. Man sagt auch, das Salz hat sich in der Lösung aufgelöst. Wasser ist dabei das Lösungsmittel für das Salz. Diese winzigen Teilchen sind sehr klein und in sehr hoher Anzahl vorhanden. Ein winziger Kristall kann davon so viele enthalten, dass die Anzahl mehr wäre als eine Milliarde mal eine Milliarde mal 100. Es dürften so ca. 100 000 000 000 000 000 000 000 sein.

Diese winzigen Teilchen sind chemisch nicht weiter teilbar. Man nennt sie Atome nach dem griechischen Wort atomos für unteilbar. Jeder Stoff besteht aus solchen winzigen kleinen Atomen.

2. Verteilen des Farbstoffes

Alle  Atome bewegen sich und stoßen dabei auch aneinander. Diese Eigenbewegung kann man sich als ein Zittern oder Schwingen vorstellen. Sie wurde von dem schottischen Biologen  Robert Brown 1827 entdeckt. Dadurch kommt es zur Verteilung der Atome in der ganzen Lösung.

Je wärmer es ist, desto schneller bewegen sich diese Teilchen dabei,

deshalb funktioniert der Versuch im warmen Wasser auch so gut.

Aufgaben

Bearbeiten
  1. Löst sich Zucker im Tee, auch wenn man nicht umrührt?
  2. Wenn jemand eine Mandarine isst, riecht man das bald im ganzen Raum. Warum?
  3. Warum wird Wäsche mit 40°C heißem Wasser gewaschen?
  4. Was kann man versuchen, wenn sich ein hartnäckiger Fleck bei 40°C nicht löst?

Dieser Versuch wird Dir sicherlich gefallen - er ist einfach und in der Erklärung faszinierend. Angeblich sind bei diesem Versuch schon Schüler durchgedreht ;-)

Versuchsbeschreibung

Man bringt Wasser in einem  Becherglas zum Kochen und beobachtet es genau. Mit einem wassergefüllten  Reagenzglas sollen die aufsteigenden Gasbläschen aufgefangen werden.

Beobachtung
Schlussfolgerung
1. Becherglas beschlägt von außen Wasser aus dem Erdgas setzt sich auf dem kalten Glas von außen ab
2. Schlierenbildung Warme und kalte Wasserschichten (=Dichteunterschiede) vermischen sich
3. Kleine Gasblasen steigen auf

gelöste Gase (Stickstoff und Sauerstoff) entweichen.

Auch Gase lösen sich demzufolge in Wasser
, nicht nur Salze und Zucker! (siehe Aquariumspumpe). Dabei gilt folgende Regel:
Kaltes Wasser kann viel aufgelöstes Gas enthalten, warmes Wasser hingegen kaum. Je wärmer die Lösung, desto weniger Gas löst sich im Wasser.
4. Große Gasblasen steigen auf

Wasser wird gasförmig und Dampfblasen steigen auf. Diese können im Gegensatz zu Beobachtung 3 nicht mit einem wassergefüllten Reagenzglas aufgefangen werden, da sie im etwas kälteren Reagenzglaswasser sofort wieder flüssig werden.

5. Wassertropfen am Becherglas Wasserdampf kühlt sich an der Glaswand ab und kondensiert.
Sieden ist ein Übertritt der Moleküle in die Gasphase
(und zwar im ganzen Gefäß, nicht nur an der Oberfläche, das nennt man Verdunsten)

Der  Siedepunkt ist abhängig von:

Bearbeiten

a) Der Masse der Teilchen. Lässt sich über die  kinetische Energie erklären (Ekin = ½ mV2)
b) Zwischenmolekularen Kräften (Vergleich H2S , H2O ,...)
c) Luftdruck, der dem „Austritt“ der Moleküle entgegenwirkt (Vergleich: Ein Bergsteiger siedet im Himalaja Tee bei 80°C, im Dampfkochtopf hingegen siedet Wasser bis 120°C). Wenn der Dampfdruck gleich dem Umgebungsdruck ist, so ist die flüssige Phase nicht mehr stabil, es kommt zum Verdampfen.

Aufgaben

Bearbeiten
  1. Wie gelangen gelöste Gase ins Wasser? (Mineralwasser)
  2. Warum blubbert kochendes Wasser?
  3. Kann man aus sprudelndem Mineralwasser eigentlich einen Tee kochen, der normal schmeckt?
  4. Welches Gas ist eigentlich in Mineralwasser aufgelöst?
  5. Warum trocknet eine gewischte Tafel eigentlich, sie ist doch (hoffentlich) kälter als der Siedepunkt von Wasser?
  6. Wie kann es in einem heißem Sommer passieren, dass die Fische in kleineren Seen sterben?
  7. In welchen Jahreszeiten fühlen sich Fische demzufolge am wohlsten? Begründe Deine Antwort!

Vorgänge beim Erhitzen von Wasser

Bearbeiten
Wikipedia hat einen Artikel zum Thema:


Auf einer der vorherigen Seiten hast Du gelernt, dass alle Stoffe aus den winzig kleinen Teilchen, den Atomen bestehen. Natürlich gilt das nicht nur für Feststoffe, sondern auch für Flüssigkeiten und Gase. Außerdem weißt Du schon, dass diese Atome ständig zittern und dieses Zittern von der Temperatur abhängig ist. Was passiert denn nun eigentlich mit den Atomen, wenn man gefrorenes Wasser kocht? Diese Skizze zeigt die Anordnung von Atomen in den drei Aggregatzuständen fest, flüssig, gasförmig.

Zusatzinformation

Die Temperaturgrenzen sind nur unter  Standarddruck wie angegeben.

Schema der Entstehung der Aggregatzustände
Schema der Entstehung der Aggregatzustände

Wird der  Schmelzpunkt(=Smp) überschritten, lösen sich die Teilchen vom Eisblock ab, weil sie sich zu stark bewegen. Der Feststoff schmilzt. Bei weiterer Erwärmung benötigen die Teilchen immer mehr Platz, bis sie schließlich am  Siedepunkt (=Sdp) in die Gasphase übergehen, weil im Außenraum, zum Beispiel über dem Kochtopf, noch genügend Platz vorhanden ist.

Der Schmelz- und der Siedepunkt sind eine Stoffeigenschaft. Jeder Stoff hat andere Schmelz- und Siedepunkte. Man kann dadurch Stoffe erkennen und zuordnen:

  Wasser Alkohol Eisen Zink
Schmelzpunkt 0°C -117°C 1535°C 419°C
Siedepunkt 100°C 79°C 2870°C 906°C
  Quecksilber Helium Wasserstoff Sauerstoff
Schmelzpunkt -39°C -272°C -259°C -219°C
Siedepunkt 357°C -269°C -253°C -183°C

Anwendungen im täglichen Leben

  • Dampfkochtopf
  • Feuerzeuggas, wird erst beim Öffnen gasförmig
  • Mikrowelle kehrt Prozess um. Teilchen werden in Schwingung versetzt, dadurch Erwärmung.
    Gefahr bei Handys, da Eiweiße im Gehirn erhitzt werden.

Aufgaben

Bearbeiten
  • Erkläre jede der drei Anwendungen kurz mit dem Teilchenmodell.
  • Warum bricht kaltes Eis auf einem See nicht so schnell, wie Eis bei genau 0°C?

Lösen von Salzen in Wasser

Bearbeiten
Wikipedia hat einen Artikel zum Thema:


Was passiert eigentlich, wenn Du Zucker oder Salz in ein Glas mit Wasser gibst. Beobachte doch mal was passiert. Einmal, wenn du rührst und nochmal ohne zu rühren.

Gesättigte Lösung

Bearbeiten

Versuchsbeschreibung

Zu 100ml Wasser wird Salz zugefügt. Löst sich alles nach dem Rühren auf, wird ein weiterer Löffel Salz hinzugefügt. Besonders schöne Kristalle erhält man mit  Alaun, chemisch korrekter Name ist Kaliumaluminiumsulfat.

Beobachtung

In der Lösung löst sich die Menge von zwei Löffeln auf, der dritte bildet einen Bodenkörper. Der BodenKÖRPER ist übrigens der Teil, der sich nicht auflöst.

Schlussfolgerung

Eine Lösung ist ein homogenes Gemisch, das aus einem oder mehreren gelösten Stoffen und einem  Lösungsmittel besteht. Viele Salze lösen sich in Wasser auf, aber das Lösungsmittel Wasser kann nicht unendlich viel Salz auflösen. Ist die Menge zu groß, bleibt ein Rückstand am Boden zurück. Man spricht von einer gesättigten Lösung. Lösungsmittel sind üblicherweise Flüssigkeiten. Die gelösten Stoffe können fest, flüssig oder gasförmig sein.

Becherglas mit Bodensatz
Becherglas mit Bodensatz
Ein Lösung ist ein Gemisch aus einem Lösungsmittel und einem Stoff, der sich darin auflöst.

Nicht alle Salze lösen sich gut in Wasser.

Einige Salze wie z. B. Marmor lösen sich so gut wie gar nicht.

übersättigte Lösung

Bearbeiten

Wenn man zu einer gesättigten Lösung weiter Salz zufügt, entsteht ein Bodenkörper. Dieser löst sich unter Umständen beim Erwärmen. Es entsteht eine übersättigte Lösung. Diese enthält mehr Salz, als sie eigentlich aufnehmen kann.

Becherglas mit Bodensatz
Becherglas mit Bodensatz

Beim Abkühlen gibt die übersättigte Lösung zuviel gelöstes Salz unter Umständen wieder ab. Wenn man einen Faden (am Besten mit einem kleinen Kristall daran) in die Lösung hängt, „wächst“ ein Kristall.

Unterkühlte Salzlösung

Bearbeiten

Nachdem Du jetzt den Schmelzpunkt und den Siedepunkt von Wasser kennen gelernt hast, stellt sich die Frage, ob Wasser sich gleichmäßig erwärmt, wenn man es erhitzt. Und was passiert, wenn man nicht reines Wasser, sondern Wasser mit gelöstem Salz kocht?

Versuchsbeschreibung

Je 6 Eiswürfel werden in einem Becherglas mit etwas Wasser benetzt. Die Temperatur wird gemessen. Das Wasser wird nun gekocht und die Temperatur alle 20s gemessen. Eine zweite Gruppen kocht die Eiswürfel, fügt aber 3 Löffel Kochsalz hinzu. Nach Versuchsende wird ein Koordinatensystem (z. B. mit Excel) erstellt.

Beobachtung

Zeit [s] Temperatur Wasser [°C] Temperatur Salzwasser [°C]
0 0 -8
20    
40    
60    
...    
Versuchsauswertung Sättigungskurven
Versuchsauswertung Sättigungskurven


Man sieht, dass sich Wasser und die Salzlösung gleichmäßig erwärmen - solange keine Eiswürfel mehr darin schwimmen - denn dann ist die genaue Messung sehr schwierig. Die Temperaturkurve von Salzwasser beginnt allerdings bei geringeren Temperaturen und erreicht ihren Sättigungspunkt bei höheren Temperaturen, als die von reinem Wasser.

Schlussfolgerung

Erklärung für die 8. Klasse

Wasser schmilzt bei 0°C und siedet bei 100°C. Gibt man Kochsalz hinzu, wird der Schmelzpunkt herabgesetzt, da sich Salzteilchen zwischen die Wasserteilchen drängeln und so die Anordnung im gefrorenen Kristall „stören“. Das Eis schmilzt, obwohl es noch nicht seinen Schmelzpunkt erreicht hat.

man spricht von einer Schmelzpunktserniedrigung.

Beim Sieden passiert etwas Ähnliches. Die Salzteilchen bewegen sich sehr schnell und entnehmen so dem System zusätzlich Energie. man muss mehr Hitze zufügen, damit alle Wasserteilchen in die Gasphase übertreten können.

man spricht von einer Siedepunktserhöhung.

Beachte die allgemeinen Aussagen eines Diagramms

  • je steiler die Gerade, desto höher die Geschwindigkeit.
  • Unterbrechungen sagen etwas über den Versuchsverlauf aus. Steigt es, wie gewohnt, danach weiter, so liegt ein Messfehler vor, entsteht eine Stufe, so war vielleicht der Brenner aus. Fällt die Temperatur, so wurde vielleicht kälteres Wasser zugefügt.

Aufgaben

Bearbeiten
  1. Erkläre die Wirkung von Streusalz!
  2. Warum wird in die Scheibenwaschanlage (im Winter) Alkohol zum Seifenwasser zugefügt?
  3. Warum gefriert eine mit Alkohol enteiste Scheibe schneller wieder, als eine, die freigekratzt wurde?

Übung: Eigenschaften von Lösungsmitteln

Bearbeiten

Welche Stoffe lösen sich eigentlich in Wasser auf? Sind es alle Stoffe, oder unterscheiden sie sich? Außerdem gibt es noch andere Lösungsmittel außer Wasser (z. B. Benzin oder Alkohol). Dieser Versuch soll klären, ob es für das Auflösen von Stoffen eine Gesetzmäßigkeit gibt.

Versuchsbeschreibung

Nimm dir die verschiedenen Lösungsmittel und untersuche, wie viel sich von den angegebenen Feststoffen darin löst. Beachte, dass eine Trübung immer bedeutet, dass sich ein Stoff nicht aufgelöst hat. Kennzeichne dann mit den Symbolen „+“, „•“ Und „–“, wie gut sich die Feststoffe in den jeweiligen Lösungsmitteln auflösen.

Beobachtung

  Kochsalz(NaCl) Traubenzucker(C6H12O6) Mehl/Stärke Kaffee
Wasser        
 Spiritus        
 Benzin        
 Aceton[1]        
  Mineralsalztablette Vitamin C Butter/ Fett Speiseöl
Wasser        
 Spiritus        
 Benzin        
 Aceton[2]        


Schlussfolgerung

Wikipedia hat einen Artikel zum Thema:


Nicht alle Stoffe können sich in jedem Lösungsmittel auflösen. Viele Stoffe lösen sich in Wasser oder in Benzin/ Aceton. Kein Stoff löst sich gut ein beiden Flüssigkeiten. Einige Stoffe lösen sich in gar keinem Lösungsmittel auf, wie z. B. das Mehl.

Die Ursache ist die so genannte Polarität, die die Du im nächsten Jahr noch besser kennen lernen wirst. Es gibt sogenannte polare und apolare (=unpolare) Lösungsmittel. Man unterscheidet dabei nicht nur hinsichtlich der Polarität von Lösungsmittel, sondern auch der Polarität des zu lösenden Stoffes. Wasser ist z. B. ein „polares“ Lösungsmittel. Benzin ein „nicht-polares“ (=„apolares“) Lösungsmittel.

In einem polaren Lösungsmittel können sich nur polare Stoffe lösen.

In einem apolaren hingegen nur apolare Stoffe.

Es gilt grob die Regel: „ähnliches löst sich in ähnlichem“

Salz ist ein polarer Stoff. Er löst sich also nur in polaren Lösungsmittel wie z. B. Wasser. Fette hingegen sind apolar und lösen sich gut in apolaren Lösungsmitteln wie Benzin, Terpentin, Verdünner oder Aceton.

Es gilt:

Stoffe die sich in Wasser lösen nennt man „hydrophil“,
Stoffe, die sich nicht in Wasser lösen „hydrophob“.

Im Alkohol liegt eine Mittelstellung vor, da er weniger polar als Wasser, aber polarer als Benzin ist. In ihm lösen sich sowohl polare, als auch apolare Stoffe, aber in jeweils geringerer Menge, als im entsprechendem Lösungsmittel.

Aufgaben

Bearbeiten
  1. Warum gehen Fettflecken und Schmiereflecken so schlecht in der Waschmaschine aus der Kleidung?
  2. Welches Lösungsmittel schlägst Du vor, um Fett von der Fahrradkette zu entfernen?
  3. Nagellack und Edding sind nicht wasserlöslich. Wie kann man sie stattdessen entfernen?
  4. Welche Möglichkeiten gibt es „Hähnchen-verschmierte Finger“ zu reinigen?
  5. Ein Schüler hatte einen Motorschaden mit seinem Mofa. Er vermutet, dass ihm jemand Zucker in den Tank getan hat.
    a) Warum ist Zucker für den Motor gefährlich und wie wirkt er sich aus?
    b) Kann man den Zucker noch nachweisen - und wie?
  6. Warum schwimmen die Fettaugen in der Suppe oben?
Wikipedia hat einen Artikel zum Thema:


Wasser ist eine chemische Verbindung aus Sauerstoff und Wasserstoff mit der Formel H2O. Die Bezeichnung Wasser wird besonders für den flüssigen Aggregatzustand verwendet, im festen, also gefrorenen Zustand wird es Eis genannt, im gasförmigen Zustand Wasserdampf oder einfach nur Dampf. Die chemisch korrekteste Bezeichnung wäre Wasserstoffoxid.

Wasservorkommen der Erde

Bearbeiten

Große Teile der Erde sind vom Wasser bedeckt. Die Versorgung der Weltbevölkerung mit hygienisch unbedenklichem Trinkwasser, sowie einer ausreichenden Menge Nutzwasser, stellt dennoch eine der größten Herausforderungen der Menschheit in den nächsten Jahrzehnten dar.

Die Wasservorkommen der Erde belaufen sich auf circa 1.386 Milliarden km3, wovon allein 1.338 Milliarden km3 (96,5 %) auf das Salzwasser der Weltmeere entfallen. Nur 35 Millionen km3 (2,53 %) des irdischen Wassers liegen als Süßwasser vor. Das mit 24,4 Mill. km3 (1,77 %) meiste Süßwasser ist dabei als Eis an den Polen, Gletschern und Dauerfrostböden gebunden und somit nicht der Nutzung zugänglich.

Wasser ist die einzige Verbindung, die in allen drei Aggregatzuständen auf unserem Planeten vorkommt. Insgesamt liegen 98,2 % des Wassers in flüssiger, 1,8 % in fester und 0,001 % in gasförmiger Form vor. In seinen unterschiedlichen Formen zirkuliert es fortwährend im globalen Wasserkreislauf. Diese Anteile sind jedoch nur näherungsweise bestimmbar, wobei im Zuge der globalen Erwärmung von einem Anstieg des Wasserdampfanteils ausgegangen wird.

Während Regenwasser recht rein ist (destilliertes Wasser, welches keine gelösten Stoffe enthält), kommt es beim Kontakt mit dem Boden sofort zum Auflösen von Mineralien, die im Boden sind (v. a. die Salzgruppen Sulfate, Chloride und Carbonate, die v. a. die Elemente Natrium, Kalium, Calcium und Magnesium enthalten). Sind landwirtschaftliche Betriebe in der Nähe, so findet man oft auch Stickstoffverbindungen wie Nitrate und Nitrite im Grundwasser). Grund dafür ist der hohe Gehalt an Fäkalien, welche auf die Felder als Dünger aufgetragen werden.

Meerwasser besteht zu großen Teilen aus Natriumchlorid („Kochsalz“), welches durch Meerwasserentsalzung gewonnen werden kann.

Aufbau und Eigenschaften des Wassermoleküls

Bearbeiten

Das Wassermolekül besteht aus zwei Wasserstoffatomen und einem Sauerstoffatom. Geometrisch ist das Wassermolekül gewinkelt. Die zwei Wasserstoffatome und die zwei Elektronenpaare sind folglich in die Ecken eines gedachten Tetraeders gerichtet. Der Winkel, den die beiden O-H-Bindungen einschließen, beträgt 104,45°. Die Bindungslänge der O-H-Bindungen beträgt jeweils 95,84  Picometer.

Eigenschaften des Wassers

Bearbeiten

Die Eigenschaften des Wassers sind so besonders, dass sie es zu dem bedeutendsten Stoff der Erde machen. Bis heute werfen einige Eigenschaften des Wassers Forschern teilweise Rätsel auf:

  • Wasser hat vergleichsweise hohe Schmelz- und Siedepunkte. Diese wurden als Fixpunkte für Temperaturskalen festgelegt.
  • Wasser siedet unter Normalbedingungen bei 100 °C und erstarrt bei 0 °C (durch gelöste Salze kann man diese Punkte allerdings verändern).
  • Wasser zeigt eine Dichteanomalie, d. h. es hat seine höchste Dichte bei 4°C, bei tieferen Temperaturen nimmt die Dichte wieder ab, deshalb schwimmt Eis.
  • Wasser ist ein hervorragendes polares Lösungsmittel für viele Stoffe.
  • Die Löslichkeit in Wasser ist oft stark von der Temperatur abhängig; dabei verhalten sich Feststoffe und Gase unterschiedlich. Gase lösen sich besser in kaltem Wasser, dagegen lösen sich Feststoffe bei zunehmender Temperatur meist besser in Wasser. Dazu gibt es allerdings wiederum viele Ausnahmen, wie zum Beispiel das  Lithiumsulfat.
  • tritt Licht von der Luft ins Wasser ein, so wird es abgelenkt (gebrochen).
  • Wasser weist eine vergleichsweise große  Oberflächenspannung auf, da sich die Wassermoleküle gegenseitig recht stark anziehen.
  • Wasser ist im reinen Zustand geschmack- und geruchlos.
  • wird Wasser aus Wasserstoff und Sauerstoff gebildet, so wird viel Energie freigesetzt.
  • Wasser hat im Vergleich zu anderen Flüssigkeiten eine hohe Wärmeleitfähigkeit, aber im Vergleich mit einigen Metallen eine sehr geringe.
  • Wasser kann auch als Säure oder Lauge reagieren. Solche Stoffe nennt man „amphoter“.

Bedeutungen des Wassers

Bearbeiten

Wasser beeinflusst entscheidend unser Klima und ist für die Entstehung von Wetter verantwortlich, vor allem durch seine Kapazität als Wärmespeicher. In den Ozeanen wird die einstrahlende Sonnenenergie gespeichert. Diese regional unterschiedliche Erwärmung führt wegen Verdunstung zu Konzentrationsunterschieden. Dieses Konzentrationsgefälle erzeugt globale Meeresströmungen, die sehr große Wärmemengen transportieren (z. B.  Golfstrom,  Humboldtstrom, äquatorialer Strom, mitsamt ihren Gegenströmungen). Ohne den Golfstrom würde in Mitteleuropa arktisches Klima herrschen.

Bei der Erwärmung verdunstet Wasser, es entsteht Verdunstungskälte. Als „trockener“ Dampf (nicht kondensierend) und als „nasser“ Dampf (kondensierend: Wolken, Nebel) enthält und transportiert es latente Wärme, die für sämtliche Wetterphänomene entscheidend verantwortlich ist (Luftfeuchtigkeit, Gewitter, Föhn).

Der aus Wolken fallende Niederschlag und der Wasserdampf bewässern die terrestrischen ??Ökotope??. Auf den Landmassen können so Gewässer oder Eismassen entstehen, die wiederum das Klima beeinflussen.

Biologie

Bearbeiten

Das Leben ist nach dem heutigen Erkenntnisstand im Wasser entstanden. Wasser wurde damit zum wichtigen Bestandteil der Zelle und zum Medium der wichtigsten biochemischer Vorgänge (Stoffwechsel) in Tier und Pflanze. Das  Zellplasma von Tieren kann allein bis zu 90 Prozent Wasser enthalten (sowie Fette, Kohlenhydrate, Eiweiße, Salze u.a. Substanzen). Das Blut von Tieren und der Saft in Pflanzen enthalten auch viel Wasser. Der Bedarf eines Menschen liegt bei 2-3 l/Tag

Wassergehalt in einigen Nahrungsmitteln

Bearbeiten
Butter 18 % Käse 30 bis 60 % Fleisch 60-75 % Wassermelone 90 %
Brot 40 % Joghurt, Milch 75 % Apfel, Birne 85 % Gurken, Tomaten 98 %

Wasserverbrauch

Bearbeiten

Der Wasserverbrauch des Menschen ist von der Entwicklung des Landes, in dem er lebt, und vom Angebot stark unterschiedlich. Wasser wird für den Verzehr (Trinkwasser), Waschen, Kochen, Landwirtschaft, Industrie u.a. verwendet.

Der Wasserbedarf in Deutschland betrug 1991 47,9 Milliarden m3, wovon allein 29 Milliarden m3 als Kühlwasser in Kraftwerken dienten. Rund 11 Milliarden m3 wurden direkt von der Industrie genutzt, 1,6 Milliarden m3 von der Landwirtschaft. Nur 6,5 Milliarden m3 dienten der Trinkwasserversorgung.

Täglicher Verbrauch

Bearbeiten
  • In Deutschland bis zu 130-300l/ Person
  • In USA bis zu 600l/ Person (z. B. durch viele Golfplätze oder Städte in der Wüste, wie Las Vegas)
  • In Entwicklungsländern teilweise 4l/ Person

Der durchschnittliche Trinkwasserverbrauch beträgt in Deutschland ca. 130 Liter pro Einwohner und Tag. Dieser Wert ist leicht im Sinken. So lag nach dem zweiten Weltkrieg der Verbrauch noch bei ca. 150 Liter pro Tag. An dieser Ersparnis haben v.a. effizientere Wasch- und Spülmaschinen, wassersparende Toilettenspülungen und ein umweltfreundlicheres Bewusstsein einen großen Anteil. Auch die Industrie muss heute wassersparender produzieren als noch in den Nachkriegsjahren.

Aufgaben

Bearbeiten
Auswertung des Wasserzählerablesens
Auswertung des Wasserzählerablesens
  1. Vergleiche die Zahlen des täglichen Verbrauchs. Brauchst Du wirklich soviel Wasser?
  2. a) Miss mindestens eine Woche lang den täglichen Wässerverbrauch und trage die Werte in die Tabelle ein (beachte, dass ihr unter Umständen mehr als einen Wasserzähler im Haus habt).
    b) Erstelle dann ein Koordinatensystem. Wie erklärst Du dir die Sprünge darin?
  3. a) Was sind Deiner Meinung nach die größten Wasserverschwender im Haus?
    b) Wie kann man Wasser sparen?
  4. Wasserverschmutzung: Informiere Dich über verschmutzte deutsche Flüsse und Gewässer. Was sind diese „Verschmutzungen“? Wie kann man Wasser reinigen?
Tag Zähler 1 [m3] Zähler 2 [m3] Verbrauch [l]
Mo      
Di      
Mi      
Do      
Fr      
Sa      
so      

Übung: Trennungen

Bearbeiten

Wir haben in einer der vorherigen Lektionen schon Gemische getrennt. Hier lernst Du weitere Methoden. Sie können auch benutzt werden, um z. B. verunreinigtes Wasser zu reinigen.

Die folgenden fettgedruckten Wörter bezeichnen Methoden, die für die davor stehenden Gemische gut geeignet sind.

Sand & Wasser Sedimentieren und dann Dekantieren

Bearbeiten

Der Ausdruck Dekantieren bezeichnet den Prozess der Abtrennung eines ungelösten Feststoffes oder einer nicht vermischten Flüssigkeit aus einer zweiten Flüssigkeit. Nach einer Ruhezeit in einem Gefäß setzt sich der Feststoff am Boden ab (wie Kakaopulver in der selbst gemachten Trinkschokolade). Dieser Vorgang heißt Sedimentieren. Die Flüssigkeit schwimmt über dem Feststoff, oder das Öl auf dem Wasser. Durch vorsichtiges Abgießen einer Schicht kann man die Stoffe trennen, sozusagen „an einer Kante trennen“ (=Dekantieren). Diese Methode funktioniert z. B. auch bei Benzin und Wasser.

Alkohol & Wasser Destillieren

Bearbeiten

Wenn zwei Stoffe unterschiedliche Siedepunkte haben, verdampft ein Stoff früher als der andere (in dem Fall würde der Alkohol zuerst verdampfen, da sein Siedepunkt bei ca. 78°C liegt)

Kieselsteine & Sand Sieben

Bearbeiten

Mit einem Sieb können Sand und Steine leicht getrennt werden.

Sand & Wasser Filtieren

Bearbeiten

Mit einem Filterpapier und einem Trichter lassen sich Sand und Wasser leicht trennen. Diese Methode funktioniert immer dann, wenn einer der beiden Stoffe größer und der andere kleiner als die Poren des Filters ist. Diese Methode ist dem Sieben sehr ähnlich, nur dass die Poren viel kleiner sind.

Eisen & Schwefel Trennung mit Magneten

Bearbeiten

Sofern sich zwei Stoffe in ihren magnetischen Eigenschaften unterscheiden, können sie leicht durch einen Magneten getrennt werden. Auf diese Weise können auch zwei Metalle getrennt werden, sofern eines davon aus Eisen, Nickel oder Cobalt besteht.

Sand & Wasser Zentrifugieren

Bearbeiten

Beim Zentrifugieren werden die unterschiedlichen Dichten der beiden Stoffe ausgenutzt. Der Stoff mit der höheren Dichte, wird stärker nach außen geschleudert (vergleiche mal mit einer Fahrt in der Berg-und-Tal-Bahn oder einem Kettenkarussell). Diese Methode funktioniert ebenso mit zwei Flüssigkeiten verschiedener Dichte oder auch nasser Wäsche in der Wäscheschleuder.

Inhaltsstoffe in Filzstiften Chromatographie

Bearbeiten

Mache mal auf ein Filterpapier Punkte in 1,5 cm Höhe mit einem schwarzen Filzstift. Stelle alles in ein mit Wasser gefülltes Becherglas (nur 1 cm). Was kannst Du sehen?

Die Erklärung hierzu ist für Deinen Wissenstand noch sehr schwierig. Es hängt mit der unterschiedlichen Polarität der im Filzstift enthaltenen Farben zusammen. Sie werden je nach Polarität bis zu einer gewissen Höhe „mitgenommen“

Zusatzinformation

Wikipedia hat einen Artikel zum Thema:


Aufgaben:

Bearbeiten
  1. Erkläre mit Deinen Worten das Prinzip, was hinter allen Trennungsvorgängen steht.
  2. Erstelle eine tabellarische Übersicht (oder ein Mindmap), welches die verschiedenen Methoden wiedergibt und finde zu jeder Methode mindestens noch ein Beispiel aus dem täglichen Leben.

Übung: Trennen eines Sand/ Salz Gemisches

Bearbeiten

Versuchsbeschreibung

Mit verschiedenen Mitteln soll ein Sand/ Kochsalzgemisch getrennt werden. Die Schüler dürfen selbst entscheiden, wie sie vorgehen.

Eine Möglichkeit besteht darin, Wasser als dritten Stoff zuzufügen und das Salz darin aufzulösen. Dann wird der Sand vom Salzwasser abfiltriert. Das Wasser lässt man verdampfen. Salz bleibt übrig.

Extraktion von Erdnussöl aus Erdnüssen

Bearbeiten

Versuchsbeschreibung

Eine Packung Erdnüsse wird im Mörser mit Diethylether oder Aceton zermörsert. (Diethylether ist gründlicher, Aceton gesünder). Das freiwerdende Öl wird abgegossen und mit dem noch enthaltenen Aceton in den Abzug gestellt. Es verdampft innerhalb weniger Minuten.

Beobachtung

Es entsteht zuerst ein Brei, aus dem dann Öltropfen austreten.

Schlussfolgerung

Nüsse enthalten sehr viel Öl. Dieses wird durch das Lösungsmittel Aceton herausgelöst. Im Luftzug des Abzugs verdampft es schnell - zurück bleibt das Öl.

Zusatzinformation
 Pflanzenöl,  Erdnuss,  Erdnussöl

Die Kläranlage

Bearbeiten
Wikipedia hat einen Artikel zum Thema:


Fließschema

Bearbeiten
Schema, wie arbeitet eine Klärgrube
Schema, wie arbeitet eine Klärgrube

Mechanische Stufe

Bearbeiten

In diesem ersten Teil finden Trennungen hauptsächlich aufgrund von physikalischen Eigenschaften, wie Dichte, Größe, Masse usw. statt. Hier werden etwa 20-30% der festen (ungelösten) Schwimm- und Schwebstoffe entfernt. In der weitergehenden Abwasserreinigung und der Industriewasserwirtschaft werden unter anderem Adsorption, Filtration und andere eingesetzt.

Regenentlastung
Bearbeiten

Falls Regen- und Schmutzwasser in einem Kanal der Kläranlage zugeleitet werden (Mischsystem), muss in der Regel ein Teil des Regenwassers entweder bereits im Kanalnetz oder auf der Kläranlage über einen Regenüberlauf entlastet und/oder in einem Regenüberlaufbecken gespeichert werden, um die Kläranlage nicht zu überlasten.

In der Rechenanlage wird das Abwasser durch einen Rechen gesäubert. Im Rechen bleiben die groben Verschmutzungen wie Fäkalstoffe, Damenbinden, Toilettenpapier, Steine, aber auch Laub und tote Ratten hängen. Diese Grobstoffe würden Pumpen der Kläranlage verstopfen. Man unterscheidet Feinrechen mit wenigen mm und Grobrechen mit mehreren cm Spaltweite.

Sandfang
Bearbeiten

Ein Sandfang ist ein Absetzbecken mit der Aufgabe, grobe, absetzbare Verunreinigungen aus dem Abwasser zu entfernen, so beispielsweise Sand, Steine, Glassplitter oder Gemüsereste. Durch Sedimentation können sich diese Stoffe absetzen.

Vorklärbecken
Bearbeiten

Ein Vorklärbecken ist nicht immer vorhanden. Das Schmutzwasser fließt sehr langsam durch das Vorklärbecken. Ungelöste Stoffe (Fäkalstoffe, Papier etc.) setzen sich ab (absetzbare Stoffe) oder schwimmen an der Oberfläche auf. Etwa 30 % der organischen Belastung kann damit entfernt werden. Es entsteht Primärschlamm, der weiter zu behandeln ist.

Biologische Stufe

Bearbeiten

In diesem Verfahrensteil werden durch Mikroorganismen die organischen Verbindungen der Abwasserinhaltsstoffe abgebaut und anorganische Stoffe teilweise durch Luftzufuhr oxidiert. Hierzu wurden zahlreiche Verfahren entwickelt.

Belebungsbecken
Bearbeiten

Im Belebungsbecken werden durch Belüften von mit Bakterienschlämmen (=Belebtschlamm) vermischtem Abwasser (gelöste) Abwasserinhaltsstoffe von den Bakterien biologisch abgebaut. Dabei werden von Bakterien und anderen Einzellern Kohlenstoffverbindungen zu Biomasse und Kohlendioxid und der Nährstoff Stickstoff durch Nitrifikation (=biologische Oxidation von Ammonium zu Nitrat unter Beisein von Sauerstoff) und Denitrifikation (=Reduktion von Nitrat zu Stickstoffgas unter Abwesenheit gelösten Sauerstoffs) abgebaut. Die überschüssige Biomasse wird als Klärschlamm bezeichnet. Durch die Zugabe von Fällmitteln kann mittels chemischer Reaktionen außerdem der Nährstoff Phosphor entfernt werden. Dies verbessert auch die Absetzeigenschaften des Belebtschlammes im Nachklärbecken.

Nachklärbecken
Bearbeiten

Das Nachklärbecken bildet eine Prozesseinheit mit dem Belebungsbecken. In ihm wird der Bakterienschlamm (=Belebtschlamm) durch Absetzen aus dem Abwasser abgetrennt. Der Schlamm wird in das Belebungsbecken zurückgeführt (Rücklaufschlamm). Der durch den Abbau der Abwasserinhaltsstoffe entstehende Biomassezuwachs wird als Überschussschlamm/Klärschlamm entsorgt, bzw. in Faultürmen unter anaeroben Bedingungen zu Faulschlamm und Biogas (=Methan und Kohlendioxid) abgebaut. Auch nach der Faulung verbleibt ein restlicher Klärschlamm. Dieser ausgefaulte Schlamm kann in der Landwirtschaft verwertet werden oder muss verbrannt werden.

Zusatz: Chemische Verfahren

Bearbeiten

Dies ist eine Zusatzinformation

Chemische Verfahren finden bei Bedarf als dritte Stufe statt. Sie bedienen sich chemischer Reaktionen wie Oxidation und  Fällung[3]. Sie dienen in der kommunalen Abwasserreinigung vor allem der Entfernung von Phosphor durch Fällungsreaktionen. Dieser Prozess hat große Bedeutung zur Vermeidung der  Eutrophierung[4] der Gewässer. Zudem werden chemische Verfahren zur Fällung in der Industriewasserwirtschaft und zur weitergehenden Abwasserreinigung (beispielsweise Flockung/Fällung/Filtration) eingesetzt.

Dalton's Atomhypothese

Bearbeiten
Wikipedia hat einen Artikel zum Thema:


 John Dalton, geboren am 6. September 1766 in Eaglesfield, England, war ein englischer Naturwissenschaftler und Lehrer. Sein Vater war als Weber reich genug, seinen Sohn auf eine Schule zu schicken. Für die damalige Zeit keine Selbstverständlichkeit. Schon im Alter von 12 Jahren wurde er selbst an dieser Schule als Lehrer tätig. Im Alter von 15 Jahren (also 1781) begann er im benachbarten Kendal mit seinem Bruder und seinem Cousin eine neue Schule zu leiten. 12 Jahre später (1793) wird er an das „New College“ nach Manchester berufen, wo er Studenten unterrichtete. Er starb am 27.7.1844, im Alter von 78 Jahren in Manchester.

Sein Interesse galt vielen Dingen, vor allem aber den Vorgängen der Natur. Durch seine meteorologischen Beobachtungen vermutete er schon 1787, dass Regen durch ein Sinken der Atmosphärentemperatur entsteht. Weiterhin arbeitete er auf dem Gebiet der Wärmeausdehnung von Gasen und formulierte ein Gesetz dazu (das „Dalton-Gesetz der Partialdrücke“). John Dalton entdeckte auch die Farbenblindheit, an der er selbst litt. Seine wichtigste Theorie veröffentlichte er 1803 zu den chemischen Elementen. Er vermutet, dass alle Stoffe aus Atomen bestehen. Diese neue Theorie wurde nach ihm „Dalton’sche Atomhypothese“ benannt:

  1. Materie besteht aus extrem kleinen, bei Reaktion ungeteilt bleibenden Teilchen, den Atomen.
  2. Die Masse der Atome eines bestimmten Elements sind gleich (alle Atome eines Elements sind gleich). Die Atome verschiedener Elemente unterscheiden sich in ihren Eigenschaften (zum Beispiel in Größe, Masse, usw.).
  3. Es existieren so viele Atomsorten wie Elemente.
  4. Bei chemischen Reaktionen werden Atome in neuer Kombination vereinigt oder voneinander getrennt.
  5. Eine bestimmte Verbindung wird von den Atomen der betreffenden Elemente in einem bestimmten, einfachen Zahlenverhältnis gebildet.

Sein bedeutendster Beitrag dürfte sein 1808 veröffentlichtes Buch „A New System Of Chemical Philosophy“ sein. Darin schlug Dalton vor, das Atomgewicht der Elemente auf das leichteste Element, den Wasserstoff zu beziehen. Diesem ordnete er dabei die Masse 1u zu. (u steht für „unit“ = Einheit). Seine Messungen waren für die damalige Zeit und die zur Verfügung stehenden Messgeräte erstaunlich genau! Er stelle gleichzeitig eine Tabelle der Atomgewichte auf, in der die Atome nach steigender Masse angeordnet waren. Diese waren eine wichtige Vorlage für die spätere Aufstellung des Periodensystems der Elemente.

1822 wurde er Mitglied der Englischen  Royal Society. Von dieser erhielt er als erster die Goldmedaille für seine Verdienste auf dem Gebiet der Chemie. 1830 wählte man ihn als erstes ausländisches Mitglied in die französische „Académie Des Sciences“ in Paris. Letzteres war die höchste Ehrung, die einem englischen Wissenschaftler im 19. Jahrhundert verliehen wurde.

Aufgaben

Bearbeiten
  1. Lies den gesamten Text und unterstreiche anschließend mit einem Bleistift alle Schlüsselwörter mit einer Wellenlinie, alle Nebeninformationen mit einer geraden Linie.
  2. Lies den Text nochmals durch. Wenn Du keine Änderungen mehr an Deinen Schlüsselwörtern und den Nebeninformationen hast, kennzeichne die Schlüsselwörter mit einem Textmarker und unterstreiche die Nebeninformationen mit einer feinen roten Linie.
  3. Erstelle einen Spickzettel mit den 12 wichtigsten Schlüsselwörtern (und Zeichnungen/ Skizzen wenn Du möchtest)
  1. Was ist ein Atom?
  2. Wie verhält es sich?
  3. Wie kann man damit festen, flüssigen und gasförmigen Aggregatzustand erklären?
  4. Warum verteilen sich Stoffe im Raum / in Flüssigkeiten von selbst?
  5. Erkläre die Begriffe „Vereinigung „ und „Zersetzung“ mit Hilfe der Atomhypothese von Dalton.
  6. Was ist eine Verbindung (am Beispiel von FeS)?

Wasserstoff

Bearbeiten
Wikipedia hat einen Artikel zum Thema:


Wasserstoff ist das chemisches Element mit dem Symbol H (leitet sich vom lateinischen hydrogenium ab). Man unterscheidet zwischen dem Element Wasserstoff „H“ und dem molekularen Wasserstoff „H2“. Nur diese zweite Form kommt in der Natur auch tatsächlich vor. Wasserstoff ist mit nur einem  Proton und einem  Elektron das leichteste der chemischen Elemente. Wasserstoff ist das leichteste aller Elemente (1,0079 u ). Der Schmelzpunkt liegt bei -262°C, der Siedepunkt bei -253°C.

Molekularer Wasserstoff H2 ist bei normaler Temperatur ein geruchloses und farbloses Gas, etwa 14-mal leichter als Luft. Sein  Diffusionsvermögen und seine Wärmeleitfähigkeit sind die höchsten aller Gase und führen zu einer Reihe von technischen Problemen beim Umgang mit Wasserstoff. Wasserstoff kann z. B. durch Stahl hindurch diffundieren und somit nur schwer aufbewahrt werden. Auf diesem Gebiet wird allerdings viel geforscht, da man hofft, dass Wasserstoff das Benzin als Treibstoff für Autos ersetzen kann.

Entdeckt wurde Wasserstoff vom englischen Chemiker  Henry Cavendish im Jahre 1766. Benannt wurde er von Antoine Lavoisier im Jahr 1787. Der Franzose taufte den Wasserstoff als hydro-gène (hydro = Wasser, griechisch; genes = erzeugend). Das Wort bedeutet demnach: „Wasser-Bildner“. Die deutsche Bezeichnung lässt auf die gleiche Begriffsherkunft schließen.

Durch die Zersetzung von Wasser kann man Wasserstoff leicht herstellen (Siehe Versuch mit dem Dreischenkelgerät).

Wasserstoff ist das häufigste chemische Element im Weltall. Wasserstoff macht 75% der gesamten Masse beziehungsweise 90% aller Atome im Universum aus. Sterne bestehen hauptsächlich aus Wasserstoff-Plasma. Die Verschmelzung (=Kernfusion) von Wasserstoffatomen zu Helium in Sternen bildet deren Energiequelle und ist vielleicht die größte Energiequelle überhaupt. Diese Reaktion wird vom Menschen in der Wasserstoffbombe und in experimentellen Fusionsreaktoren genutzt. Wenn man diese Reaktion kontrollieren könnte, wären alle Energieprobleme der Menschheit gelöst.

Auf der Erde sind von keinem anderen Element so viele Verbindungen bekannt. Hier kommt es meist gebunden in Form von Wasser vor, aber auch in allen Lebewesen, in Erdöl, Erdgas und in Mineralen. In der Atmosphäre der Erde kommt es aber fast gar nicht elementar vor; der überwiegende Teil des Wasserstoffs auf der Erde ist in Wasser - an Sauerstoff gebunden - vorhanden. Andere natürliche Vorkommen sind Kohle und natürliche Gase, beispielsweise Methan (CH4).

Die wichtigste Reaktion ist die Knallgasreaktion:

2 H2 + O2 2H2O + Energie


Knallgas ist eine explosionsfähige Mischung von Wasserstoff und Sauerstoff im Verhältnis H:O=2:1. Beim Kontakt mit offenem Feuer (Glut oder Funken) erfolgt die so genannte Knallgasreaktion. Die Knallgasreaktion ist die explosionsartige Reaktion von Wasserstoff mit Sauerstoff. Sie ist eine Form der Verbrennung.

Wasserstoff lässt sich durch die Knallgasprobe nachweisen. Dabei entzündet man eine kleine Menge Wasserstoff in einem Reagenzglas. Wenn danach ein dumpfer Knall, ein Pfeifen oder ein Bellen zu hören ist, so ist der Nachweis positiv (das heißt es war Wasserstoff in dem Reagenzglas).

Gewinnung

Bearbeiten
  • durch die Reaktion verdünnter Säuren mit unedlen Metallen (z. B. Zink),
  • durch Elektrolyse von Wasser, Natronlauge oder wässrigen Natriumchlorid-Lösungen
  • durch Zersetzung des Wassers durch Alkalimetalle
  • durch chemische Reaktion (Reformierung) von Erdgas und anderen Kohlenwasserstoffen mit Wasserdampf  Dampfreformierung

Wiederholungsaufgaben

Bearbeiten
  1. Warum blubbert kochendes Wasser?
  2. Kann man aus sprudelndem Mineralwasser eigentlich einen Tee kochen, der normal schmeckt? Erkläre an diesem Beispiel das Lösen von Gasen in Wasser.
  3. Welches Gas ist eigentlich in Mineralwasser aufgelöst?
  4. Warum trocknet eine gewischte Tafel eigentlich, sie ist doch kälter als der Siedepunkt von Wasser?
  5. Wie kann es in einem heißem Sommer passieren, dass die Fische in kleineren Seen sterben? In welchen Jahreszeiten fühlen sich Fische demzufolge am wohlsten?
  6. Beschreibe, was man beobachtet und was mit den Atomen passiert, wenn man Wasser kocht.
  7. Nenne drei Lösungsmittel und ordne ihnen Stoffe zu, die sich darin auflösen.
  8. Warum kann sich Salz nicht in Waschbenzin auflösen. Welche Stoffe löst Waschbenzin besser? Nenne eine passende Regel.
  9. In welcher Lösungsmittelgruppe lösen sich: Säuren, Laugen, Salze, Nagellack, Butter, Ölflecken.
  10. Ein starker Raucher hat gelbe Finger und Zähne und in der Wohnung gelb-verschmutzte Gardinen. Nur mit Wasser bekommt er es nicht sauber. Was ist für die Verschmutzung verantwortlich und wie kann dem Raucher geholfen werden?
  11. Erkläre, wie man eine übersättigte Salzlösung herstellen und wie man mit dieser einen Kristall züchten kann.
  12. Beim Kochen einer gefrorenen Salzlösung kann man zwei interessante Beobachtungen machen. Erkläre sie.
  13. Erkläre die Wirkung von Streusalz.
  14. Warum wird in die Scheibenwaschanlage (im Winter) Alkohol zum Seifenwasser zugefügt?
  15. Warum gefriert eine mit Alkohol enteiste Autoscheibe schneller wieder, als eine, die freigekratzt wurde?
  16. Warum wird stark verschmutze Wäsche bei 60°C und leicht verschmutzte Wäsche nur bei 40°C gewaschen?
  17. Nenne zwei Methoden, wie man fettige Hände nach dem Essen eines Hähnchens reinigen kann.
  18. Ein Schüler hatte einen Motorschaden mit seinem Mofa. Er vermutet, dass ihm jemand Zucker in den Tank getan hat.
    a) Warum ist Zucker für den Motor gefährlich und wie wirkt er sich aus?
    b) Kann man den Zucker noch nachweisen - und wie?
  19. Warum schwimmen die Fettaugen in der Suppe oben?
  20. Beschreibe die chemische Verbindung H2O. Nenne Vorkommen, Eigenschaften und Bedeutung.
  21. Wie erklärst Du Dir den hohen Wasserverbrauch in Deutschland von bis zu 300 L pro Tag und Person? (zum Vergleich: in einigen Entwicklungsländern liegt er bei 4 L pro Tag und Person!)
  22. Wie stellt man aus Wasser eigentlich Wasserstoff her? Kann man das auch „kostenlos“ machen?
  23. Beschreibe Wasserstoff mit seinen Eigenschaften und Reaktionen.
  24. Nenne chemische Trennungsmethoden und ordne ihnen passende Stoffgemische zu.
  25. Wie funktioniert eigentlich eine Kläranlage?
  26. Beschreibe die Extraktion von Erdnussöl.
  27. Wie trennt man ein Sand-Salzgemisch?
  28. Vervollständige die allgemeinen Aussagen eines Diagramms:
    Je ................ die Gerade, desto höher die Geschwindigkeit. Unterbrechungen hingegen sagen etwas über den .................................... aus. ................... die Kurve , wie gewohnt, danach weiter, so liegt ein ................................ vor, entsteht eine Stufe, so war vielleicht der ..................... aus. Fällt die .................................. , so wurde vielleicht kälteres Wasser zugefügt.
  29. Welche Messfehler kann man beim Messen einer Temperatur-Zeitkurve erhalten? Zähle sie auf.

  1. Auch bekannt als Nagellackentferner
  2. Auch bekannt als Nagellackentferner
  3. Inhalt eines späteren Kapitels
  4. Eutrophe Gewässer sind gefährdet, weil sie zuviel Nährstoffe enthalten.

Gesetzmäßigkeiten chemischer Reaktionen

Bearbeiten

Gesetze von der Erhaltung der Masse und der Energie

Bearbeiten

Massenerhaltung

Bearbeiten

Was geschieht eigentlich mit der Masse der Reaktionsteilnehmer bei einer chemischen Reaktion? Dies zu überprüfen, ist gar nicht so einfach, da man dazu ein geschlossenes System haben muss, in das kein neuer Stoff eindringt, aber auch nichts entweicht. Um das zu erreichen, wird ein Rundkolben mit einem Luftballon gasdicht verschlossen. Ein Stopfen eignet sich nicht zum Verschließen, er würde sofort durch die Wärmeausdehnung herausknallen!

Versuchsbeschreibung

In einen Rundkolben werden Streichholzspitzen gefüllt. Er wird mit einem Luftballon verschlossen und gewogen.

Dann erhitzen wir den Kolben, bis sich die Streichholzköpfe entzünden.

Anschließend wiegen wir den Kolben erneut und vergleichen die gemessenen Gewichte.

Beobachtung

Der Luftballon dehnt sich aus und zieht sich wieder zusammen.

Gewicht vor der Reaktion: m1 = 50,41 g

Gewicht nach der Reaktion: m2 = 50,41 g

Schlussfolgerung
Das Gas dehnt sich bei Erwärmung aus und kontrahiert beim Abkühlen.

Die Gesamtmasse der Reaktionspartner hat sich nicht geändert.

 Antoine Lavoisier (1743 - 1794): Gesetz von der Erhaltung der Masse:

Rien ne se perd, rien ne se crée

Die Gesamtmasse ändert sich bei chemischen Reaktionen (im Rahmen der Messgenauigkeiten) nicht.

MasseAusgangsstoffe=MasseProdukte

Energieerhaltung

Bearbeiten

 Albert Einstein (14.3. 1879 - 18.4.1955):


Umwandlung von Energie in Masse und von Masse in Energie ist möglich.


(c = Lichtgeschwindigkeit = 300.000 km/s)


Bei einer chemischen Reaktion ist die Summe aus Masse und Energie der Ausgangsstoffe gleich der Summe aus Masse und Energie der Endstoffe.


Wird Energie frei, tritt ein unwägbar kleiner Massenverlust auf. Wird Energie investiert, tritt Massenzunahme auf. Dieses kann allerdings mit herkömmlichen Waagen nicht gemessen werden.


Energieerhaltung bei chemischen Reaktionen

Bearbeiten

In einem späteren Schuljahr wirst du dies als  ersten Hauptsatz der Thermodynamik kennenlernen.

Versuchsbeschreibung

Bei diesem Versuch wird nasses CaO getrocknet. Anschließend wird wieder Wasser zugegeben.

Beobachtung

Wir beobachten, dass Energie zum Entfernen des Wassers benötigt wird. Die Zugabe von Wasser setzt Energie frei.

Wasser, CaO und Becherglas und Thermometer werden gewogen. Dann wird das Wasser zugegeben. Die Temperatur steigt.

Schlussfolgerung

Woher stammt die freiwerdende Energie (Temperatur)?

Eine praktische Erklärung

Nach Einstein ist E=mc2. Wenn c eine Konstante ist und nach dem ersten Gesetz die Masse sich nicht ändert, so muss auch die Gesamtenergie bei chemischen Reaktionen unverändert bleiben.

Wenn Benzin verbrennt und Energie frei wird, muss sie schon vorher enthalten sein.

Der Stoff muss also eine Art innerer Energie besitzen.

Gesetz der konstanten Massenverhältnisse

Bearbeiten

Statt von Massenverhältnissen zu sprechen, kann man auch Proportionen sagen.

 Joseph Louis Proust 1754 - 1826 war Apotheker in Paris und auch Forscher in Madrid, wo er vom spanischen König bezahlt wurde. Er musste für seine Medikamente viele Kräuter mischen und reagieren lassen und war daran interessiert, so wenig wie möglich bei einer Reaktion an Resten „über“ zu haben, also zu verschwenden, da die Kräuter selten und teuer waren. Er untersuchte also chemische Reaktionen unter dem Aspekt der Masse.

Um seine Erkenntnisse zu verstehen, kann man ein einfaches Masseexperiment durchführen, welches schon bekannt ist, die Vereinigung von Kupfer mit Schwefel:

Versuchsbeschreibung

Mehrere Schülergruppen wiegen ein Kupferblech vor und nach der Vereinigung mit Schwefel. Dann wird der Mittelwert aller Messungen bestimmt und das Massenverhältnis berechnet.

Beobachtung

Der Mittelwert aller Messungen lautet:

  • Kupferblech vor der Reaktion: 6g
  • Kupferblech nach der Reaktion: 7,5g

Das Kupfer hat mit 1,5g Schwefel reagiert.

Schlussfolgerung

Kupferblech + Schwefel Schwefelkupfer + Energie


So wird das Verhältnis berechnet:

Folgende Grafik soll Dir verdeutlichen, dass der Zusammenhang bei jeder Masse besteht und proportional ist. D.h. Das konstante Massenverhältnis von Kupfer zu Schwefel ist immer 4:1

Proportionalität zwischen der Masse von Kupfer und Schwefel
Proportionalität zwischen der Masse von Kupfer und Schwefel

 Louis Proust (1799): Gesetz der unveränderlichen Massenverhältnisse

Bei chemischen Reaktionen, also Vereinigung beziehungsweise Zersetzung, reagieren die Reinstoffe immer in einem von der Natur vorgegebenen festen Verhältnis miteinander.

Aufgaben zum Rechnen mit Massenverhältnissen

Bearbeiten
  1. Eisen + Schwefel (Fe + S):
    a) Bei einem Versuch reagieren 140 g Eisen mit 80 g Schwefel. Stelle die Reaktionsgleichung auf und bestimme das Massenverhältnis.
    b) Wie viel Schwefel braucht man für 105 g Eisen?
    c) Bei einer anderen Vereinigung werden zu einem Eisenblech 200 g Schwefel gegeben. Die Vereinigung verläuft vollständig. Wie schwer war das Eisenblech?
  2. Kupfer und Schwefel (Cu + S):
    a) Ein Kupferblech wiegt 400 g. Es wird mit Schwefel vereinigt. Nach der Reaktion wiegt es 600 g. Wie groß ist die Masse des Schwefels der reagiert hat?
    b) Bestimme das Massenverhältnis.
    c) Wieviel Gramm Schwefel braucht man für die Reaktion von 233 g Cu?
  3. Wasserstoff und Sauerstoff (H + O):
    a) Auch Gase haben ein Gewicht. 8 g Wasserstoff und 64 g Sauerstoff vereinigen sich beim Entzünden mit einem lauten Knall. Stelle die Reaktionsgleichung auf und bestimme das Massenverhältnis.
    b) Wie viel Gramm Wasserstoff braucht man für 12 g Sauerstoff?

Gesetz der konstanten Massenverhältnisse

Bearbeiten
Die konstanten Masseverhältnisse bei der Bildung von FeS
Die konstanten Masseverhältnisse bei der Bildung von FeS

Eisen und Schwefel reagieren im Massenverhältnis 7:4 miteinander

Dieses Ergebnis gilt auch bei großen Massen (z.B. Tonnen)!

Daraus folgt das

Gesetz der konstanten Massenverhältnisse:
Bei chemischen Reaktionen reagieren die Stoffe immer in einem
von der Natur vorgegebenen festen Verhältnis miteinander.

Zerlegbarkeit von Stoffen

Bearbeiten

Schon der Grieche  Demokrit - 460 - 371 v. Chr. - nahm an, dass man Stoffe nicht beliebig weit zerkleinern kann. Er vermutete ein unteilbares Teilchen, welches er „Atomos“ nannte, nach dem griechischen Wort für unteilbar.

Für die Existenz von winzigen Teilchen sprechen viele Befunde:

Versuchsbeschreibung
Brom ist ein bei Raumtemperatur gerade noch flüssiges Nichtmetall, welches bei Freisetzung sofort verdunstet. Zum Beweis, dass die Flüssigkeit Brom aus kleineren Bestandteilen besteht, wird ein Tropfen Brom in einen mit Luft gefüllten Gaszylinder getropft.

Beobachtung
Der braune Dampf breitet sofort sich aus und verteilt sich im ganzen Zylinder

Schlussfolgerung
Die Teilchen verteilen sich selbstständig im Raum. Man nennt diesen Vorgang Diffusion. Dies ist die Verteilung von Teilchen aufgrund ihrer Eigenbewegung (siehe auch Kapitel 5 - Versuch des Kaliumpermanganatkristalls in Wasser)

Weiterhin spricht für die „Atom-Theorie“, dass viele Stoffe Kristalle bilden:

Versuchsbeschreibung
Man erstellt eine gesättigte Alaunlösung. Ein kleiner Impfkristall wird in die Alaunlösung gehängt.

Beobachtung
Der Kristall wächst und bildet einen Oktaeder.

Schlussfolgerung
Kleinste Teilchen legen sich an die Oberfläche in ganz bestimmter Weise aneinander. Es bildet sich ein großer Kristall. Jede neue Schicht vergrößert den Kristall, lässt die Grundgestalt aber unverändert.

Daltons Atomhypothese

Bearbeiten
Wikipedia hat einen Artikel zum Thema:


 John Dalton, geboren am 6. September 1766 in Eaglesfield, England war ein englischer Naturwissenschaftler und Lehrer. Sein Vater war als Weber reich genug, seinen Sohn auf eine Schule zu schicken. Für die damalige Zeit keine Selbstverständlichkeit. Schon im Alter von 12 Jahren wurde er selbst an dieser Schule als Lehrer tätig. Im Alter von 15 Jahren (also 1781) begann er im benachbarten Kendal mit seinem Bruder und seinem Cousin eine neue Schule zu leiten. 12 Jahre später (1793) wird er an das „New College“ nach Manchester berufen, wo er Studenten unterrichtete sollte. Er starb am 27.7.1844, im Alter von 78 Jahren in Manchester.

Sein Interesse galt vielen Dingen, vor allem aber den Vorgängen der Natur. Durch seine meteorologische Beobachtungen vermutete er schon 1787, dass Regen durch ein Sinken der Atmosphärentemperatur entsteht. Weiterhin arbeitete er auf dem Gebiet der Wärmeausdehnung von Gasen und formulierte ein Gesetz dazu (das „Dalton-Gesetz der Partialdrücke“). John Dalton entdeckte auch die Farbenblindheit, an der er selbst litt. Seine wichtigste Theorie veröffentlichte er 1803 zu den chemischen Elementen. Er vermutet, dass alle Stoffe aus Atomen bestehen. Diese neue Theorie wurde nach ihm „Daltonsche Atomhypothese“ benannt:

  1. Materie besteht aus extrem kleinen, bei Reaktion ungeteilt bleibenden Teilchen, den Atomen.
  2. Die Masse der Atome eines bestimmten Elements sind gleich (alle Atome eines Elements sind gleich). Die Atome verschiedener Elemente unterscheiden sich in ihren Eigenschaften (zum Beispiel in Größe, Masse, usw.).
  3. Es existieren so viele Atomsorten wie Elemente.
  4. Bei chemischen Reaktionen werden Atome in neuer Kombination vereinigt oder voneinander getrennt.
  5. Eine bestimmte Verbindung wird von den Atomen der betreffenden Elemente in einem bestimmten, einfachen Zahlenverhältnis gebildet.

Sein bedeutendster Beitrag dürfte sein 1808 veröffentlichtes Buch „A New System Of Chemical Philosophy“ sein. Darin schlug Dalton vor, das Atomgewicht der Elemente auf das leichteste Element, den Wasserstoff zu beziehen. Diesem ordnete er dabei die Masse 1u zu. (u steht für „unit“ = Einheit). Seine Messungen waren für die damalige Zeit und die zur Verfügung stehenden Messgeräte erstaunlich genau! Er stelle gleichzeitig eine Tabelle der Atomgewichte auf, in der die Atome nach steigender Masse angeordnet waren. Diese waren eine wichtige Vorlage für die spätere Aufstellung des Periodensystems der Elemente.

1822 wurde er Mitglied der Englischen  Royal Society. Von dieser erhielt er als erster die Goldmedaille für seine Verdienste auf dem Gebiet der Chemie. 1830 wählte man ihn als erstes ausländisches Mitglied in die französische „Académie Des Sciences“ in Paris. Letzteres war die höchste Ehrung, die einem englischen Wissenschaftler im 19. Jahrhundert verliehen wurde.

Aufgaben

Bearbeiten
  1. Lies den gesamten Text und Unterstreiche anschließend mit einem Bleistift alle Schlüsselwörter mit einer Wellenlinie, alle Nebeninformationen mit einer geraden Linie.
  2. Lese den Text nochmals durch, wenn Du keine Änderungen mehr an Deinen Schlüsselwörtern und den Nebeninformationen hast, kennzeichne die Schlüsselwörter mit einem Textmarker und unterstreiche die Nebeninformationen mit einer feinen roten Linie.
  3. Erstelle einen Spickzettel mit den 12 wichtigsten Schlüsselwörtern (und Zeichnungen / Skizzen wenn Du möchtest).

Dalton bestimmte das Atomgewicht durch Vergleich von Atommassen

Bearbeiten

Natürlich kann man Atommassen nicht direkt vergleichen, weil man die Atome nicht einzeln in die Waagschale legen kann. Auch Dalton ging so vor, wie wir das bei unserem Versuch mit dem Kupferblech gemacht haben.

Versuchsaufbau Leitfähigkeit von Lösungen
Versuchsaufbau Leitfähigkeit von Lösungen

Wenn man die relative Atommasse auf ein Atom bezieht und in Gramm ausrechnet, bemerkt man, wie gering die Masse eines Atoms ist:

Die Masse eines Wasserstoffatoms beträgt:

0,000 000 000 000 000 000 000 001 637g

Die Masse eines Sauerstoffatoms beträgt:

0,000 000 000 000 000 000 000 0267g

Warum ist das Massenverhältnis konstant?

Bearbeiten

Nimmt man die Masse von zwei Atomen Wasserstoff und einem Atom Sauerstoff, so erhält man folgendes Verhältnis:

Nimmt man statt einem Atom beispielsweise 12345 Atome, so erhält man wieder das gleiche Massenverhältnis:

Wie man sieht, ist das Massenverhältnis nicht von der Anzahl der beteiligten Atome abhängig, da sie sich aus dem Verhältnis sowieso herauskürzen.

Erklärung des Gesetzes der konstanten Massenverhältnisse

Bearbeiten

Beispiel: Eisensulfid

7 g Eisen + 5 g Schwefel 11 g Eisensulfid + 1 g Schwefel + Energie
9 g Eisen + 4 g Schwefel 11 g Eisensulfid + 2 g Eisen + Energie
7 g Eisen + 4 g Schwefel 11 g Eisensulfid     + Energie
Da Schwefel und Eisen in einem konstanten Verhältnis miteinander reagieren und bei 7 g Eisen und 4 g Schwefel kein Rest übrig bleibt, folgt daraus, dass in 7 g Eisen genauso viele Atome enthalten sind wie in 4 g Schwefel.

Wichtig: Es können nur ganze Atome reagieren (da sie chemisch unteilbar sind)

Bildung von FeS
Bildung von FeS
gezählt 5 Atome Fe + 5 Atome S 5 Moleküle FeS + Energie
  Anzahlverhältnis
gewogen 7 g Fe + 4 g S 11 g FeS + Energie
  Massenverhältnis
bzw: 5 56u + 5 32u 5 88u + Energie
  Massenverhältnis

Frage

Hat damit Dalton das Gesetz der konstanten Massenverhältnisse schon erklärt?

Wenn die Anzahl der reagierenden Eisenatome der Anzahl an reagierenden Schwefelatomen entspricht, dann muss das Massenverhältnis immer gleich sein, da nur ganze Atome miteinander reagieren können und sich deren Anzahl im Verhältnis heraus kürzt:

Beispiel:

Unabhängig von der Anzahl der beteiligten Atome ist das Massenverhältnis immer konstant, da die Atome in einem festen Anzahlverhältnis miteinander reagieren.

Ein Vergleich: Im Klassenraum sind Jungen (alle 70 kg) und Mädchen (50 kg). Egal wie viele Mädchen mit Jungen sich zu Paaren zusammenstellen, es kommt immer das Verhältnis 7:5 pro Paar heraus.

Aufgaben

Bearbeiten
  1. Schreibe einen Aufsatz, der erklärt, inwiefern Daltons Atomhypothese das Gesetz der konstanten Proportionen erklärt.
  2. Erkläre die Konsequenzen der Aussage „Eisen reagiert mit Schwefel zu Eisensulfid. Genau ein Atom Eisen reagiert dabei immer mit einem Atom Schwefel“
  3. Was kann man mit diesem Wissen nun alles aus der Formel „FeS“ herauslesen?
  4. Was passiert wenn wir mehr Schwefel nehmen ( S Atome bleiben übrig. (siehe Anfang!))

Gesetz der multiplen Proportionen

Bearbeiten

Ein Mineralsammler findet einen schwarzen Brocken mit Eisensulfid (FeS) sowie einen Brocken eines goldenen Minerals. Eine Untersuchung ergibt für beide (!), dass nur Fe und S enthalten ist. Nach einer quantitativen Analyse des goldenen Minerals wissen wir mehr.

Bildung von FeS
Bildung von FeS
gezählt 2*5 Atome Fe + 5 Atome S 5 Moleküle FeS2 + Energie
  Anzahlverhältnis
gewogen 7 g Fe + 8 g S 15 g FeS2 + Energie
  Massenverhältnis
bzw: 5 56u + 232u 5 88u + Energie
  Massenverhältnis

Durch diesen Wert kann man nun die Formel und den Namen des Minerals mit der passenden Fachliteratur bestimmen: Das Mineral heißt  Eisenkies (Pyrit, Katzengold, fools gold) und kommt z.B. in Silberbergwerken vor. Seine Formel ist FeS2

Es handelt sich um zwei völlig verschiedene Verbindungen, die beide aus Eisen und Schwefel bestehen und ganz verschiedene Eigenschaften haben. Sie unterscheiden sich z. B. in ihrem Massenverhältnis.
Das Gesetz der Multiplen Proportionen: Elemente verbinden sich in einem von der Natur vorgegebenem, einfachen Massenverhältnis oder deren Vielfachen miteinander.
Theoretisch mögliche Kombinationen wären: 7/4, 7/8, 14/4, 14/12… usw

Vergleiche:

Bearbeiten

Eisensulfid 1: schwarzes Pulver, magnetisch ( Magnetkies)

Bildung durch: 7 g Eisen + 4 g Schwefel11 g Eisensulfid 1 (=Magnetkies)

= =

Eisensulfid 2: gold-metallisch glänzend, nicht magnetisch ( Eisenkies, Katzengold, Pyrit),

Bildung durch: 7 g Eisen + 8 g Schwefel 15 g Eisensulfid 2 (=Eisenkies)
    Diese Reaktion erfordert speziellen Reaktionsbedingungen, wie sie  z.B. im Erdinneren, bei hohem Druck und hoher Temperatur vorliegen.

= =

Berechnung des tatsächlichen Massenverhältnis

tatsächliches Massenverhältnis = einfaches Massenverhältnis x=1 ^ y=2

Mit diesem Wissen wurden von Chemikern nun viele Mineraliensucher ausgeschickt, die rausfinden sollten, welche Verbindungen es wirklich gibt. In der Natur findet man allerdings nicht alle denkbaren Vielfachen, obwohl theoretisch viele möglich sind.
Es stellt sich heraus, dass es tatsächlich nur wenige Elementkombinationen gibt.

Ein weiteres Eisensulfid wurde aber tatsächlich noch gefunden, die Analyse ergab ein Massenverhältnis von Fe : S = 14 : 12

7 g Eisen vereinigen sich mit 6 g Schwefel vollständig.
Bildung von FeS
Bildung von FeS

2 Fe + 3 S Fe2S3

Die Formel dieses Eisensulfids ist Fe2S3

Dieses Wissen erforderte eine neue Schreibweise für chemische Verbindungen:

Regeln für die chemische Formel

Bearbeiten

Bsp.: C6H12O6 (Traubenzucker)

  1. Anschreiben der Symbole der an der Verbindung beteiligten Elemente (C, H, O).
  2. Das Anzahlverhältnis der Atome wird durch tief gestellte Zahlen ausgedrückt.
  3. Symbole der Metalle werden vorangestellt.

Aufgaben

Bearbeiten
  1. Wie viele Atome sind in Schwefelsäure (Phosphorsäure) miteinander vereinigt?
  2. Fe reagiert mit S unter hohem Druck im Massenverhältnis 7/6. Bestimme das Atomverhältnis.
  3. Schwefel verbrennt an der Luft mit blassblauer Flamme. Wenn der Schwefel in reinem Sauerstoff verbrennt leuchtet er blau und es entsteht ein weißer Feststoff:
    Stelle die zwei Reaktionsgleichungen auf und bestimme die Massenverhältnisse.
  4. Die Gase Stickstoff und Sauerstoff verbinden sich im Automotor im Massenverhältnis N:O = 7/16. Bestimme die Formel des entstehenden Gases
  5. Eine Müllverbrennungsanlage verbrennt am Tag 1000 kg Kunststoffe. Diese enthalten 950 kg Kohlenstoff. 95% davon verbrennen vollständig zu Kohlenstoffdioxid. 5% verbrennen unvollständig zu Kohlenstoffmonooxid. Stelle beide Reaktionsgleichungen auf und bestimme die Massen der entstehenden Gase.

Aufgaben zum Rechnen

Bearbeiten
  1. Eisen reagiert mit Schwefel unter hohem Druck im Massenverhältnis 14/12. Bestimme das Atomverhältnis.
  2. Die Gase Stickstoff und Sauerstoff verbinden sich im Automotor im Massenverhältnis N:O = 7/8 Bestimme die Formel des entstehenden Gases
  3. Im Labor lässt sich Stickstoff aber auch in anderen Massenverhältnissen oxidieren. So reagieren 126 g Stickstoff mit 288 g Sauerstoff zu einem gelben Gas. Bestimme das Massenverhältnis und bestimme die Formel des gelben Gases.
  4. Im Dieselkraftstoff ist Schwefel enthalten. Es bildet sich bei der Verbrennung im Motor das Gas Schwefeldioxid.
    a) Stelle die Reaktionsgleichung (mit „C“ als Dieselkraftstoff) auf.
    b) Bestimme, wie viel Gramm Schwefeldioxid pro kg Sauerstoff entstehen.
    c) In einem Liter Dieselkraftstoff sind (ca.) 10 g Schwefel enthalten. Bestimme die Masse an Schwefeldioxid, die bei einer Fahrstrecke von 100 km (Verbrauch 5l / 100 km) entsteht.
  5. Wenn reiner Kohlenstoff in reinem Sauerstoff verbrennt, ist kein Produkt zu sehen. Kann man es dennoch beweisen?
  6. Bei einem Versuch reagieren 21 g Eisen mit 12 g Schwefel. Stelle die Reaktionsgleichung auf und bestimme das Massenverhältnis. Wie viel Schwefel braucht man für 25 g Eisen?

Wiederholungsfragen

Bearbeiten

Die Wiederholungsfragen beziehen sich auf dieses Kapitel und alle Kapitel für Klasse 8.

Unglaublich leichte Wiederholungsfragen

Bearbeiten
  1. Ist Luft (Wasser?) ein Element? Begründe!
  2. Erkläre: Element - Verbindung - Gemisch.
  3. Was ist ein Metalloxid (Nichtmetalloxid)? Nenne je zwei Beispiele.
  4. Wie kann man Metallsulfide bilden. Nenne ein Beispiel.
  5. Erkläre die Vereinigung von Kupfer mit Schwefel (Eisen mit Schwefel).
  6. Was ist eine Vereinigung, was ist eine Zersetzung?
  7. Nenne Stationen in Daltons Leben.
  8. Beschreibe, was man erhält, wenn man Säure und Lauge gleicher Konzentration mischt.
  9. Was sagt der Massenerhaltungssatz aus?
  10. Was sagt der Energieerhaltungssatz aus?
  11. Was sagt das Gesetz der vielfachen Massenverhältnisse aus?
  12. Worin liegt die Erweiterung des Gesetzes der vielfachen Massenverhältnisse im Vergleich zu dem der konstanten Massenverhältnisse?
  13. Welcher Stoff entsteht, wenn man Phosphoroxid und Wasser mischt (Natriumoxid)?
  14. Welcher Stoff entsteht, wenn man Stickoxid (NO2) und Wasser mischt?
  15. Welcher Stoff entsteht, wenn man Kohlenstoffdioxid und Wasser mischt?
  16. Nenne die Formel für Sauerstoff, Wasserstoff, Stickstoff, Wasser und Kohlenstoffdioxid
  17. Was ist eine Säure, was ist eine Lauge? Wie macht man eine Säure unschädlich?
  18. Stelle die Reaktionsgleichung der Bildung von Fe2O3 auf (SO2 , SO3 , CO2 )
  19. Nenne 5 Säuren mit Formel (3 Laugen mit Formel, 5 Säurereste mit Formel).

TIPP: Lerne nochmals alle Säuren, Laugen und die Säurereste auswendig!

Halsbrecherische, fiese und vor allem testrelevante Fragen zum Tüfteln

Bearbeiten
  1. Erstelle eine Übersicht der chemischen Gesetze, indem Du das Gesetz jeweils formulierst und mindestens ein Beispiel findest.
  2. Fe verbrennt mit Schwefel unter hohem Druck im Massenverhältnis 7/6. Bestimme das Atomverhältnis!
  3. Zwei Atome verbinden sich im Massenverhältnis 1: Wie heißt die Verbindung? (Für Profis: 2: 16)
  4. Die Gase Stickstoff und Sauerstoff verbinden sich im Automotor im Massenverhältnis N:O = 7/16. Bestimme die Formel des entstehenden Gases.
  5. 2,4 g Magnesium und 7,0 g Chlor reagieren miteinander. Bestimme die Formel der Verbindung.
  6. Eine Müllverbrennungsanlage verbrennt am Tag 1000 kg Kunststoffe. Diese enthalten 950 kg Kohlenstoff. 95% davon verbrennen vollständig zu Kohlenstoffdioxid. 5% verbrennen unvollständig zu Kohlenstoffmonooxid. Stelle beide Reaktionsgleichungen auf und bestimme die Massen der entstehenden Gase.
  7. Eisen reagiert mit Schwefel unter hohem Druck im Massenverhältnis 14/12. Bestimme das Atomverhältnis.
  8. Die Gase Stickstoff und Sauerstoff verbinden sich im Automotor im Massenverhältnis N:O = 7/8. Bestimme die Formel des entstehenden Gases.
  9. Im Labor lässt sich Stickstoff aber auch in anderen Massenverhältnissen oxidieren. So reagieren 126 g Stickstoff mit 288 g Sauerstoff zu einem gelben Gas. Bestimme das Massenverhältnis und bestimme die Formel des gelben Gases.
  10. Im Dieselkraftstoff ist Schwefel enthalten. Es bildet sich bei der Verbrennung im Motor das Gas Schwefeldioxid.
    a) Stelle die Reaktionsgleichung (mit „C“ als Dieselkraftstoff) auf
    b) Bestimme, wie viel Gramm Schwefeldioxid pro kg Sauerstoff entstehen
    c) In einem Liter Dieselkraftstoff sind (ca.) 10 g Schwefel enthalten. Bestimme die Masse an Schwefeldioxid, die bei einer Fahrstrecke von 100 km (Verbrauch 5l / 100 km) entsteht. Bei einem Versuch reagieren 21 g Eisen mit 12 g Schwefel. Stelle die Reaktionsgleichung auf und bestimme das Massenverhältnis. Wie viel Schwefel braucht man für 25 g Eisen?

Volumenverhältnisse bei chemischen Reaktionen

Bearbeiten

In diesem Versuch wird die Zersetzung von Wasser durch elektrische Energie im Hoffmann’schen Zersetzungsapparat gezeigt.

Zersetzung
Zersetzung

Wir beobachten wie Gasblasen aufsteigen am

-Pol: Knallgasprobe positiv +Pol: Glimmspanprobe positiv

Unsere Schlussfolgerung lautet, dass

Wasser (l) + Energie Wasserstoff (g) + Sauerstoff (g)

2 Vol Wasserstoff + 1 Vol Sauerstoff 2 Vol Wasserdampf + E

Exkurs: Verbrennung von Kohlenstoff:

Verbrennung von Kohlenstoff
Verbrennung von Kohlenstoff

also:

Verbrennung von Kohlenstoff zu Kohlenstoffmonoxid
Verbrennung von Kohlenstoff zu Kohlenstoffmonoxid

Sauerstoff ist ein zweiatomiges Molekül: O2

Wie kommt es dazu, dass doppelt so viel Wasserstoff entsteht?

Bearbeiten
Zersetzung von Wasser
Zersetzung von Wasser

also:

Zersetzung von Wasser zu Wasserstoff und Sauerstoff
Zersetzung von Wasser zu Wasserstoff und Sauerstoff

Weitere Beispiele:

Bearbeiten
Hier ein paar Beispiele: 1 Vol Wasserstoff + 1 Vol Chlor 2 Vol Chlorwasserstoff (g) + E
  3 Vol Wasserstoff + 1 Vol Stickstoff 2 Vol Ammoniak (g) +E
Volumengesetz nach Gay-Lussac:
Die reagierenden Gasvolumina stehen zueinander im Verhältnis kleiner ganzer Zahlen.
Beispiel: 1 RT Wasserstoff (g) + 1 RT Chlor (g) 2 RT Chlorwasserstoff (g)
  2 RT Wasserstoff (g) + 1 RT Sauerstoff (g) 2 RT Wasserdampf (g)
  3 RT Wasserstoff (g) + 1 RT Stickstoff (g) 2 RT Ammoniak (g)
Hypothese von Avogadro:
Gleiche Gasvolumina enthalten bei gleichem Druck und gleicher Temperatur die gleiche Anzahl von Teilchen.

Beispiel:

Bildung von Chlorwasserstoff
Bildung von Chlorwasserstoff
Clorwasserstoffbildung
Clorwasserstoffbildung
Wasserdampfbildung
Wasserdampfbildung
Amoniakbildung
Amoniakbildung
Merke: Kleinste Teilchen, die aus zwei oder mehreren Atomen zusammengesetzt sind, nennt man Moleküle.
Regel: Die Gase Sauerstoff, Stickstoff, Wasserstoff und die Halogene sind die Nichtmetalle,

die als zweiatomiges Molekül vorkommen.

Also: H2, O2, N2, Cl2, Br2, I2

Unterscheide: 1 H2 = 1 Molekül Wasserstoff, 1 H = 1 Wasserstoffatom, 2 NH3 = 2 Moleküle Ammoniak

Die Oxidationszahl

Bearbeiten

Bei der Oxidationszahl handelt es sich um eine nützliche Hilfszahl. Statt Oxidationszahl zu sagen kannst du auch von der Wertigkeit sprechen.

  • Wertigkeiten werden als römische Ziffer über den entsprechenden Atomsymbolen angegeben.
  • Elemente haben stets die Wertigkeit 0.
  0 0 0
z.B.: Cl,  Au
  • Sauerstoff besitzt in Verbindungen die Wertigkeit -II.
  +II -II +I -II +IV -II
z.B.: MgO, 
  • Wasserstoff besitzt in Verbindungen die Oxidationszahl +I.
  +I -I +I -II -III +I
z.B.: HCl, 
  • Atome, die Wasserstoff ersetzen, erhalten positive Vorzeichen.
  +I -I +I -II
z.B.: NaCl, 
  • Atome, die Wasserstoff binden, erhalten negative Vorzeichen.
  +I -I +I -II -III +I
z.B.: HF, 
  • Der Betrag der Oxidationszahl ergibt sich aus der Zahl der ersetzten bzw. gebundenen Wasserstoffatome.

z.B.: s.o.

  • Die Summen der Oxidationszahl in Molekülen bzw. Verbindungen ergibt immer 0.

z.B.: s.o.

  • Die Oxidationszahl der Elemente der ersten 3 Hauptgruppen in Verbindungen (!) ist immer positiv und entspricht der Hauptgruppennummer.
  +I -I +II -II +III -II
z.B.: NaCl, 
  • Bei Ionen entspricht die Oxidationszahl der Ionenladung. Somit haben auch Säurereste die der Ladung entsprechende Oxidationszahl.
  +I +II +III -II
z.B.: Fe3+,   S2-

Aufgaben

Bearbeiten

Stelle die Wertigkeiten für die folgenden Elemente und Verbindungen auf:

Cu, NH4Cl, HBr, KBrO3, H2O, NaCl, H3PO4, Mg, I2, C6H12O6, CO2, HClO4, Al2(SO4)3, H2SO4, BaCl2, AgCl, AgNO3, AlCl3, CaCO3, CaCl2, Br2, Fe2O3, FeCl3, KHSO4, SO2, N2, NaNO3, NH3, KI, HCl, H2O, MgO, Al2O3, NaCl, N2, NaOH, NH3, SO2, CaO, H2S, SO3, K2O, Na2CO3 , N2O3 , BaO2 , Cl2O3, SeF6, K2SnO3, H2N2O2, CaB2O4, Cr2O42-, Cr2O72-, AsO43-, MnO4-, HOBr, HBrO2, HBrO3, HBrO4, SCl2, PCl3, BCl3, SnH4, SbCl5,

Säurereste und Wertigkeit (=Oxidationszahlen)

Bearbeiten

Säure HCl Säurerest ist Cl (Chlorid) ; Oxidationszahl/ Wertigkeit ist -I Säure HNO3 Säurerest ist NO3 (Nitrat) ; Oxidationszahl/ Wertigkeit ist -I

Säure H2SO4 Säurerest ist SO4 (Sulfat) ; Oxidationszahl/ Wertigkeit ist -II Säure H2CO3 Säurerest ist CO3 (Carbonat) ; Oxidationszahl/ Wertigkeit ist -II

Säure H3PO4 Säurerest ist PO4 (Phosphat) ; Oxidationszahl/ Wertigkeit ist -III

Prinzip: Die Oxidationszahl/ Wertigkeit der Säurereste entspricht der Anzahl an Wasserstoffen (mit umgekehrtem Vorzeichen!)

Oxide bei Stickstoff

Bearbeiten

Stickstoff ist ein Element, welches viele verschiedene Oxide bildet. Dies ist nun auch nach dem Gesetz der vielfachen Massenverhältnisse möglich.

Wertigkeit Formel Name I Name II
+ I N2O Stickstoff-(I)-oxid Distickstoffmonoxid
+II NO Stickstoff-(II)-oxid Stickstoffmonoxid
+III N2O3 Stickstoff-(III)-oxid Distickstofftrioxid
+IV NO2 Stickstoff-(IV)-oxid Stickstoffdioxid
+IV N2O4 Stickstoff-(IV)-oxid Distickstofftetraoxid
+V N2O5 Stickstoff-(V)-oxid Distickstoffpentaoxid

Die griechischen Zahlen

Bearbeiten
griechische Zahl arabische (normale) Entsprechung griechische Zahl arabische (normale) Entsprechung griechische Zahl arabische (normale) Entsprechung
mono 1 penta 5 nona 9
di 2 hexa 6 deca 10
tri 3 hepta 7    
tetra 4 octa 8    

Regeln zum Erstellen von Reaktionsgleichungen

Bearbeiten

1. Wortgleichung erstellen. Dazu Ausgangsstoffe und Endstoffe aufschreiben.

z.B. Aluminium + Sauerstoff Aluminiumoxid

2. Chemische Symbole darunter schreiben.

z.B. Aluminium + Sauerstoff Aluminiumoxid
  Al + O2 AlO

3. Mit Hilfe der Wertigkeit die Anzahlverhältnisse bei Verbindungen festlegen.

z.B. Aluminium + Sauerstoff Aluminiumoxid
  0   0   III -II
  Al + O2 Al2O3

4. Die Anzahl der Atome auf beiden Seiten ausgleichen. (Vorsicht, die Formeln selbst dürfen jetzt nicht mehr verändert werden!)

z.B. Aluminium + Sauerstoff Aluminiumoxid
    0     0    III -II
  4Al + 3O2 2Al2O3

5. Überlegen, ob Energie benötigt oder freigesetzt wird?

z.B. Aluminium + Sauerstoff Aluminiumoxid    
    0     0    III -II    
  4Al + 3O2 2Al2O3 + E

Tipps:

  1. Nur Wasserstoff, Stickstoff, Sauerstoff (und die Elemente der 7 HG) kommen als zweiatomiges Element vor:
    H2, N2, O2, F2, Cl2, Br2, I2 (es gibt also niemals Fe2 oder Al4!!!)
  2. Wenn es zu viele Atome sind, um sie im Kopf zu zählen, male für jedes Atom einen Punkt in einer Farbe. Gleiche Element haben dabei die gleiche Farbe. Am Ende sollen auf beiden Seiten der Reaktionsgleichung die gleiche Anzahl von Punkten in den selben Farben stehen.
  3. Überlege Dir immer gut, ob die Formel, die Du jetzt errechnet hast, überhaupt logisch ist und sie Dir bekannt vorkommt. Ein einfaches Zusammenzählen aller Atome ist nämlich nur sehr selten die richtige Lösung: z.B. reagieren CH4 + O2 nicht zu CH4O2 sondern zu CO2 + H2O (Kohlenstoffdioxid und Wasser!)

Ein typischer Schülerfehler...

Bearbeiten

Der häufigste Schülerfehler ist, einfach Stoffe und Verbindungen zu erfinden, da deren Formel gut beim mathematischen Ausgleichen helfen würde!

z.B.: Eisenoxid reagiert mit Kohlenstoff zu Eisen und Kohlenstoffdioxid

Eisenoxid + Kohlenstoff Eisen + Kohlenstoffdioxid + E
  Fe2O3 + C Fe +   + E

1. Lösungsweg - waagerecht gelesen - völlig falsch, führt nicht zum Ergebnis!

Der Schüler denkt sich, dass 2 Eisenatome entstehen, weil ja anfangs 2 vorliegen und dazu 3 O freiwerden, welche mit C zu CO3 reagieren. Wäre ja sehr praktisch!

Eisenoxid + Kohlenstoff Eisen + Kohlenstoffdioxid
  Fe2O3 + C 2 Fe + CO3 (Aua)

Was ist passiert? Statt einfach die Formel für Kohlenstoffdioxid hinzuschreiben - die weiß der Schüler doch aus dem Namen (!), wird gleich gerechnet und waagerecht geschaut, was frei wird. Nun müsste in jedem Buch der Welt die Formel von Kohlenstoffdioxid zu CO3 verändert werden! Das ist ehrlich gesagt alles Murks!

2. Lösungsweg - zuerst senkrecht lesen - richtige Lösung!

Zuerst schreibt man aus der Wortgleichung alle Formel auf. D. h. es wird senkrecht gearbeitet:

Eisenoxid hat die Formel Fe2O3, Kohlenstoff ist C usw...

Eisenoxid + Kohlenstoff Eisen + Kohlenstoffdioxid + E
  Fe2O3 + C Fe + CO2 + E

Diese Gleichung ist noch nicht ausgeglichen, nun muss gerechnet werden. Dazu gilt: auf beiden Seiten der Gleichung muss die gleiche Anzahl der jeweiligen Atome vorliegen. Wenn das nicht automatisch der Fall ist, müssen einzelne Reaktionspartner mit ganzen Zahlen multipliziert werden.

Wenn also 3 O am Anfang vorliegen und nur 2 entstehen sollen, dann sucht man z. B. den kleinsten gemeinsamen Nenner und erweitert in diesem Fall auf 6!

Eisenoxid + Kohlenstoff Eisen + Kohlenstoffdioxid + E
  2 Fe2O3 + C Fe + 3CO2 + E

Jetzt sind auf beiden Seiten 6 O vorhanden, jetzt muss man noch nach Kohlenstoff und Eisen schauen. Es liegen 4 Eisenatome vor, diese müssen also auch entstehen ( 4 Fe entstehen) und es entstehen 3 CO2, also benötigt man auch 3 C bei den Ausgangsstoffen.

Eisenoxid + Kohlenstoff Eisen + Kohlenstoffdioxid + E
  2 Fe2O3 + 3 C 4 Fe + 3CO2 + E

Übung zum Erstellen von Reaktionsgleichungen I

Bearbeiten
Eisen + Schwefel Eisensulfid + E
  +   FeS + E
  +   Fe2S3 + E
           
Kupfer + Schwefel Kupfersulfid + E
  +     +  
           
Kohlenstoff + Sauerstoff Kohlenstoffdioxid + E
  +     +  
           
Schwefel + Sauerstoff Schwefeldioxid + E
  +     +  
           
Phosphor + Sauerstoff Phosphoroxid + E
  +   P4O10 +  
           
Eisen + Sauerstoff Eisenoxid + E
  +   FeO +  
  +   Fe2O3 +  
           
Kupfer + Sauerstoff Kupferoxid + E
  +     +  
           
Magnesium + Sauerstoff Magnesiumoxid + E
  +     +  
           
Aluminium + Sauerstoff Aluminiumoxid + E
  +   Al2O3 +  
           

Bildung der Säuren aus Nichtmetall(-oxid) und Wasser

Bearbeiten
Kohlenstoffdioxid + Wasser   + E
  +     + E
           
Schwefeloxid + Wasser   +  
SO3 +     +  
SO2 +     +  
           
Phosphor + Wasser   +  
  +     +  
           

Übung zum Erstellen von Reaktionsgleichungen II

Bearbeiten

Oxidationen (Vereinigungen)

Bearbeiten
Wasserstoff + Sauerstoff Wasser + E  
H2 +   H2O + E  
             
Kohlenstoff + Sauerstoff Kohlenstoffoxide + E  
  +   CO +   Kohlenstoffmonooxid
  +   CO2 +   Kohlenstoffdioxid
Kohlenstoffmonooxid + Sauerstoff Kohlenstoffdioxid + E  
  +   CO2 +   Kohlenstoffdioxid
             
Schwefel + Sauerstoff Schwefeloxide + E  
  +   SO + E Schwefelmonoxid
  +   SO2 + E Schwefeldioxid
  +   SO3 + E Schwefeltrioxid
Schwefeldioxid + Sauerstoff Schwefeltrioxid + E  
  +   SO3 + E  
             
Stickstoff + Sauerstoff Stickstoffoxide + E  
  +   NO2 + E Stickstoffdioxid
  +   N2O + E Distickstoffmonoxid
  +   N2O4 + E Distickstofftetraoxid
               

Laugenbildung aus Metalloxid und Wasser

Bearbeiten
Natriumoxid + Wasser   + E
Na2O +   NaOH +  
           
Calciumoxid + Wasser   +  
CaO +   Ca(OH)2 +  
           

Neutralisation

Bearbeiten
Salzsäure + Natronlauge Wasser + Natriumchlorid + E
  +     + NaCl +  
           
Salzsäure + Magnesiumlauge Wasser + Magnesiumchlorid +  
HCl +   + MgCl +  
           

Zersetzungen

Bearbeiten
Kohlenstoffdioxid + E Kohlenstoff + Sauerstoff
  +     +  
           
Quecksilberoxid + Energie   +  
HgO +     +  
           

Übung zum Erstellen von Reaktionsgleichungen III

Bearbeiten

Umsetzungen

Bearbeiten
Zink + Salzsäure Zinkchlorid + Wasserstoff + E
  +   ZnCl2 +   +  
           
Magnesium + Salzsäure Magnesiumchlorid + Wasserstoff + E
  +     +   +  
           
Zinksulfid + Salzsäure Zinkchlorid + Schwefelwasserstoff + E
ZnS +     + H2S +  

Aufgaben für Profis

Bearbeiten
Alkohol + Sauerstoff Wasser +   + E
C2H5OH +   +   +  
           
Stickstoffmonoxid + Sauerstoff Stickstoffdioxid +   + E
  +     +   +  
           
Stickstoffdioxid + Wasser Salpetersäure + Stickstoffmonoxid + E
  +     +   +  
           
Stickstoffmonoxid + Stickstoffdioxid Distickstofftrioxid + E    
  +     +   +  
           
Stickstoffdioxid + Sauerstoff Distickstoffpentoxid + E    
  +     +   +  
Kohlenstoffmonoxid + Wasserstoff Methan + Wasser + E
  +   CH4 +   +  
           
Benzin + Sauerstoff Wasser + Kohlenstoffdioxid + E
C8H18 +     +   +  
           
Wasserstoff +   Chlorwasserstoff + E    
  +     +   +  
           
  +   Aluminiumchlorid + E    
  +   AlCl3 +   +  
           
Magnesium + Kohlenstoffdioxid   + Kohlenstoff + E
  + CO2   +   +  
           

Übung zum Erstellen von Reaktionsgleichungen IV

Bearbeiten

Bestimme die Reaktionsgleichungen

Bearbeiten
  1. Bildung von Stickstoffmonooxid aus den Elementen
  2. Neutralisation von Fluorwasserstoffsäure mit Calciumlauge
  3. Magnesium mit Salzsäure zu Magnesiumchlorid (MgCl2) und Wasserstoff
  4. Bildung von Schwefeltrioxid aus den Elementen
  5. Neutralisation von Salpetersäure mit Calciumlauge
  6. Bildung von Di Stickstofftrioxid aus den Elementen
  7. Neutralisation von Bromwasserstoffsäure mit Kalilauge
  8. Bildung von Cl2O7 aus den Elementen
  9. Neutralisation von Calciumlauge mit schwefeliger Säure
  10. Verbrennung von H2S2O3 zu Schwefeldioxid und Wasser
  11. Bildung von Calciumphosphat u. a. aus Phosphorsäure

Formelgleichung der Umsetzung von Magnesium mit Salzsäure

Bearbeiten

Woher wissen Chemiker eigentlich immer genau, wie die Formel einer Verbindung ist? Nachdem Du nun vom Gesetz der vielfachen Massenverhältnisse theoretisch weißt, soll hier gezeigt werden, wie man eine Formel praktisch bestimmt.

Magnesium + Salzsäure
Magnesium + Salzsäure

Versuchsbeschreibung
In diesem Versuch wird Mg in HCl gebracht. Die Produkte werden untersucht. Das Ziel ist, die Formel des entstehenden Salzes zu bestimmen.

Beobachtung
Wir beobachten, wie sich das Magnesium auflöst und eine heftige Gasentwicklung stattfindet. Die Knallprobe ist positiv.

Schlussfolgerung
Es bildet sich Wasserstoff. Bei der Reaktion wird Energie frei. Das Chlorid hat den Bindungspartner gewechselt. Es fand eine Umsetzung statt. Die Gleichung ist so noch nicht ausgeglichen. Wenn man es tut, bekommt man zwei Möglichkeiten.

Magnesium + Salzsäure Wasserstoff + Magnesiumchlorid + E

Es gibt zwei Möglichkeiten für die Formel des Salzes Magnesiumchlorid:

a) Mg + 2HCl H2 + MgCl2 + E

oder:

b) 2Mg + 2HCl H2 + 2MgCl + E

Das Gesetz der vielfachen Proportionen erklärt, dass es möglich ist, Atome in vielfachen Massenverhältnissen zusammen zu vereinigen. Doch woher weiß man in der Praxis, wie viele Atome miteinander reagieren?

Wie kann man entscheiden ob Reaktion 1 oder 2 vorliegt?

Beide Reaktion unterscheiden sich durch das Verhältnis der Mg Atome zu Wasserstoffmolekülen.

ein Zusatzversuch ist notwendig

Quantitative Untersuchung der Reaktion.

Bearbeiten

Der 2. Versuch ist ungefähr der gleiche Versuch wie V1, nur wird dieses Mal das das Produkt aufgefangen und das Volumen bestimmt

Versuchsaufbau Bestimmung des Volumens von Wasserstoff
Versuchsaufbau Bestimmung des Volumens von Wasserstoff

Vorwissen:

Bearbeiten

1 mg Magnesium enthält 2,48 * 1019 Atome 1 ml Wasserstoff enthält 2,68 * 1019 Wasserstoffmoleküle

m (Mg) Anzahl Mg-Atome V (H2) Umrechnung auf Normalbedingungen Vo = 0,922 x V Anzahl H2 -Moleküle
V2a 30,5 mg 7,564 x 1020 30,55 ml 28,17 7,55 x 1020
V2b 33,3 mg 8,26 x 1020 33,5 ml 30,7 8,23 x1020

Schlussfolgerung

Bearbeiten

Ein Mg-Atom setzt ein Wasserstoff-Molekül frei. Da ein H2 Molekül aus zwei Atomen besteht, muss das Mg-Atom zwei Cl-Atome binden. Das Atom-Verhältnis von Mg zu Wasserstoff ist 1:1  die korrekte Reaktionsgleichung ist

a) Mg + 2 HCl H2 + MgCl2 + E

Eine Reaktion, bei der gleichzeitig eine Vereinigung des einen Stoffes und eine Zersetzung des anderen stattfindet, nennt man „Umsetzung“.

Bestimmung der Formel eines Salzes

Bearbeiten

Natürlich gibt es auch einen theoretischen Weg, wie man die Zusammensetzung eines Salzes leichter bestimmen kann. Dazu muss man die Metalle und die Säurereste immer so kombinieren, dass die Wertigkeiten (=Oxidationszahl) in ihrem Betrag zueinander passen.

Eine Beispielaufgabe: Welche Formel hat die Verbindung „Magnesiumchlorid“?

Magnesium hat die Wertigkeit +II und wird kombiniert mit Chlorid, welches die Wertigkeit -I hat.

II   -I   II -I
Mg + Cl MgCl

Wie man sieht, passen die Wertigkeiten nicht zueinander. Damit die Summe Null ergibt, muss eine weitere negative Ladung her! Dies erreicht man durch Zugabe eines weiteren Cl.

II   -I   II -I
Mg + 2Cl MgCl2

Durch das Verhältnis von Mg : Cl = 1 : 2 liegt eine weitere negative Wertigkeit vor, so dass die +II des Magnesiums durch 2 mal -I des Chlor ausgeglichen wird.

die Formel für Magnesiumchlorid muss also MgCl2 lauten,

da die zwei positiven Wertigkeiten ja durch zwei negative ausgeglichen werden müssen.

Da Chlorid nur eine davon hat, braucht man 2 Chloridteilchen!

Aufgaben mit Lösungen

Bearbeiten
  1. Kombiniere Natrium und Sulfat zu Natriumsulfat.
  2. Kombiniere Kalium mit Sulfid zu Kaliumsulfid.
  3. Kombiniere Calciumion und Phosphat zu Calciumphosphat.
  4. Wozu braucht man die Klammer bei der letzten Formel eigentlich bei den Säureresten?

Zu 1: Zuerst muss man die Formeln der Säurereste und deren Wertigkeiten wissen (deshalb muss man sie auch auswendig lernen!)

Na: Wertigkeit: +I    
SO4: Wertigkeit: -II (da es in H2SO4 an zwei Wasserstoffe gebunden ist)
Na2SO4

zu 2:

K: Wertigkeit: +I    
S: Wertigkeit: -II (da es in H2S an zwei Wasserstoffe gebunden ist)
K2S

Zu 3: Tipp: kleinster gemeinsamer Nenner ist 6!

Ca Wertigkeit: +II    
PO4 Wertigkeit: -III (da es in H3PO4 an drei Wasserstoffe gebunden ist)
Ca3(PO4)2

Zu 4: Säurereste bleiben in der Regel erhalten und zersetzen sich nicht so leicht. Die Wertigkeit gilt somit immer für den ganzen Säurerest. Um dieses zu verdeutlichen und sie nicht einem Element zuzuordnen benötigt man eine Klammer. Außerdem benötigt man den Säurerest zweimal. Deshalb kommt er in Klammern und wird mit zwei mal genommen!

Auf diese Art und Weise kann man jetzt alle Salzformeln leicht bestimmen. Bei Metallen der Nebengruppenelemente findet man die Wertigkeiten (auch Oxidationszahl genannt) im PSE.

Aufgaben zur Wiederholung

Bearbeiten
  1. Beschreibe die Reaktion von Magnesium mit Salzsäure.
  2. Beschreibe, was man erhält, wenn man Säure und Lauge gleicher Konzentration mischt.
  3. Nenne drei Säuren mit Formel.
  4. Nenne zwei Laugen mit Formel.
  5. Was sagt der Massenerhaltungssatz aus?
  6. Was sagt der Energieerhaltungssatz aus?
  7. Was sagt das Gesetz der vielfachen Massenverhältnisse aus?
  8. Worin liegt die Erweiterung des Gesetzen der vielfachen Massenverhältnisse im Vergleiche zu den konstanten Massenverhältnissen?
  9. Stelle die Reaktionsgleichung der Bildung von Fe2O3 auf.
  10. Stelle die Reaktionsgleichung der Bildung von SO2 auf.
  11. Stelle die Reaktionsgleichung der Bildung von SO3 auf.
  12. Stelle die Reaktionsgleichung der Bildung von CO2 auf.
  13. Welcher Stoff entsteht, wenn man Phosphoroxid und Wasser mischt?
  14. Welcher Stoff entsteht, wenn man Stickoxid (NO2) und Wasser mischt?
  15. Welcher Stoff entsteht, wenn man Kohlenstoffdioxid und Wasser mischt?

Atombau – Das Kern-Hüllen-Modell und das Periodensystem der Elemente

Bearbeiten

Der Rutherford’sche Streuversuch (1909)

Bearbeiten

Beschreibung des Experiments:

Bearbeiten

Der neuseeländische Atomphysiker englischer Abstammung Ernest Rutherford[1] schoss 1909 die Kerne von Heliumatomen, so genannte Alpha-Strahlung auf eine sehr dünne Goldfolie. Diese hatte er sich extra von seinem Schmied anfertigen lassen. Sie war extrem dünn und nur 2000 Atomlagen dick (entspricht ca. 0,0005 mm). Für die α-Strahlen[2] verwendete Rutherford einen radioaktiven Strahler, der ein radioaktives Gestein enthielt.

Er konnte mit einem Fotografiefilm bzw. einem Leuchtschirm aus Zinkoxid die Teilchen sichtbar machen, welche seine Goldfolie durchdrangen. Auf dem Leuchtschirm erschienen die Strahlen mit einem grünlichen Schimmer. Seine erste Vermutung war allerdings, dass alle Teilchen von der Folie abprallen, vergleichbar mit einem Ball, den man gegen eine Wand wirft.

Da er diese erste Vermutung nicht bestätigt fand, wiederholte er das Experiment mehrere Male. Schließlich hätte seine Goldfolie ja auch Löcher aufweisen können. Aber auch neue Goldfolien brachten die gleichen Ergebnisse. Daraus schloss er, dass vielleicht seine Vermutung grundlegend falsch war. Er dachte lange nach und stelle dann eine völlig neue, für uns unglaubwürdige Theorie auf.

Zusatzinformationen

Bearbeiten
Wikipedia hat einen Artikel zum Thema:


Beobachtungen und Schlussfolgerungen:

Bearbeiten
Ablenkung beim Rutherford´schen Versuch

a) 99,9999% der "Geschosse" durchdringen die Goldfolie ohne Ablenkung. (Als wären die 2000 Lagen von Goldatomen gar nicht existent)
(Vergleich: Dartpfeil durch Bauzaun werfen)

Atome müssen demzufolge fast „leer“ sein.

b) Einige Teilchen davon werden ein wenig abgelenkt.
(Vergleich Billard)

Im Zentrum des Atoms befindet sich ein „Atomkern“ der im Vergleich zum gesamten Atom sehr viel kleiner ist. Er ist umgeben von einer Elektronenhülle (Durchmesser des Kerns ist ca. 100.000 mal kleiner) Volumenvergleich Kern: 10-45m3: Goldatom: 10-30 m3 = 10-15 : 1)

c) Eines von 100.000 Teilchen wird sogar zurückgeschleudert/ stark abgelenkt (=Querschläger).

Da die α-Teilchen positiv geladen sind, muss der Atomkern auch (elektrisch) positiv geladen sein.

Größenverhältnisse: ØAtomkern : ØAtomhülle = 10-15m : 10-10 = 1  : 100.000

Vergleich: wäre der Atomkern im Durchmesser so groß wie ein Tischtennisball (2 cm), so wäre die ganze Atomhülle 2 km groß!

  • Atome sind zu 99,9999% leer
  • Atome enthalten einen Atomkern
  • Der Atomkern enthält positiv geladene Teilchen (=Protonen)

Atome haben eine Masse. Wo ist diese dann lokalisiert?
Fast die gesamte Masse eines Atoms befindet sich im Atomkern. Er hat eine außerordentlich hohe Dichte! (ρ= 4•1014 g/cm3)
(Vergleich ρPb= 11g/cm3)

Bsp.: Masse eines hypothetischen Stecknadelkopfes, der nur aus Atomkernen besteht V Stecknadelkopf = 5 mm3,
ρKernmaterie = 2,44 •1014 g/cm3 m= 1,22•1012 Tonnen!

Aufgaben:

Bearbeiten
  1. Beschreibe Rutherfords Versuch und erkläre die Beobachtungen mit Deinen Worten!
  2. Warum hat Rutherford den Versuch so oft wiederholt?

Zusatzinfos

Bearbeiten
Wikipedia hat einen Artikel zum Thema:


Die "Grundbausteine" des Atoms

Bearbeiten

Heute wissen wir mehr über Atome, als z. B. noch Medelejew. Sie enthalten drei Elementarteilchen: Protonen, Neutronen und Elektronen.

Von außen betrachtet sind Atome elektrisch zwar neutral, aber im Inneren bestehen sie aus einem Atomkern mit positiv geladenen Protonen und elektrisch neutralen Neutronen und einer Atomhülle aus negativ geladenen Elektronen:

Teilchen Symbol Masse [kg] Masse [u] Elementarladung Aufenthaltsbereich
Proton: p+ 1,6726•10-27 1,0073 +1 (positiv) Atomkern
Neutron: n 1,6749•10-27 1,0087 0 (ungeladen) Atomkern
Elektron: e- 9,1096•10-31 0,0005 -1 (negativ) Elektronenhülle
Definition der atomaren Masseeinheit: 1u = 1/12 der Masse eines Kohlenstoffatoms
aus 6 Protonen, 6 Neutronen und 6 Elektronen (12C)

Zusatzinfos zu Atomen

Bearbeiten
  • Nahezu die gesamte von uns wahrnehmbare, unbelebte und belebte Materie in unserer irdischen Umgebung besteht aus Atomen oder geladenen Atomen (=Ionen)
  • Atome gleicher Anzahl der Protonen, der Kernladungszahl, gehören zu demselben Element.
  • Bei (ungeladenen) Elementen ist Anzahl von Protonen und Elektronen gleich.
  • Die physikalischen Eigenschaften der Atomhülle bestimmen das chemische Verhalten eines Atoms
  • Eine durch Protonen- und Neutronenzahl charakterisierte Atomsorte bezeichnet man als Nuklid. (Neutronenzahl + Protonenzahl = Nukleonenzahl)
  • Nuklide gleicher Kernladungszahl (Protonenzahl) und unterschiedlicher Neutronenzahl heißen Isotope z.B. 126C;146C
  • alle Atomkerne der Erde dicht aneinander gepackt Würfel von 75 m Kantenlänge
  • Die Masseneinheit für Elementarteilchen ist 1u (= 1,66056 • 10-27 kg)
  • Seit 1932 haben die Physiker weit mehr als einhundert verschiedene Elementarteilchen entdeckt und beschrieben, die jedoch chemische Reaktionen nicht beeinflussen und für die Schule keine Rolle spielen. Nach neueren Erkenntnissen sind alle "Elementarteilchen" aus 12 Elementarbausteinen und 4 Grundkräften zusammengesetzt. Der bekannteste Vertreter sind die "Quarks".
  • Die stärkste Kraft, die Menschen kennen, wirkt zwischen Protonen und Neutronen und hält den Atomkern zusammen. Sie ist um 10 • 1041 mal stärker als die Gravitation der Erde; Ihre Reichweite ist sehr kurz – außerhalb des Atomkerns spürt man sie nicht. Wäre die Erdgravitation so stark, so wäre ein Reiskorn 1 Billion mal schwerer als die Erde!
  • Die Chemie beschäftigt sich mit den Atomen und ihren Verbindungen, den Molekülen. Dies setzt auch genaue Kenntnisse über die Struktur der Atomhülle voraus.
  • Die Atomphysik beschäftigt sich unter anderem mit dem Aufbau der Atomhülle, dem Aufbau der Atomkerne aus Elementarteilchen und weiter mit den Eigenschaften der Elementarteilchen.
Wikipedia hat einen Artikel zum Thema:


Weitere Informationen vor allem zur geschichtlichen Entwicklung des Atombegriffs:

Zusatzinfos: Die Geschichte des Atombegriffs und des Aufbaus von Atomen

Bearbeiten

Nach:

Wikipedia hat einen Artikel zum Thema:


  • um 400 vor Christus - Demokrit und das Teilchenmodell
Demokrit, ein altgriechischer Gelehrter, äußerte als erster die Vermutung, dass die Welt aus unteilbaren Teilchen - (griechisch a-tomos = unteilbar) Atomen - bestände. Daneben gäbe es nur leeren Raum. Alle Eigenschaften der Stoffe ließen sich, nach Meinung Demokrits, auf die Abstoßung und Anziehung dieser kleinen Teilchen erklären. Diese Idee wurde von den Zeitgenossen Demokrits abgelehnt, da man damals die Welt als etwas Göttliches ansah. Demokrits philosophischer Kontrahent war vor allem Empedokles, der die Lehre von den vier Elementen Feuer, Erde, Luft und Wasser begründete. Demokrits Vorschlag blieb fast 2 Jahrtausende unbeachtet.
  • um 1400 - Die Alchemisten - Gold kann nicht hergestellt werden
Auch wenn die Alchemisten in ihren Versuchen, aus niederen Stoffen (wie etwa Blei) Gold herzustellen, scheiterten, leisteten sie Vorarbeit für die spätere experimentelle Physik und Chemie.
  • 1803 - John Dalton - Atomtheorie der Elemente
Der englische Chemiker John Dalton griff als erster wieder die Idee von Demokrit auf. Aus konstanten Mengenverhältnissen bei chemischen Reaktionen schließt Dalton darauf, dass immer eine bestimmte Anzahl von Atomen miteinander reagiert.
  • 1896 entdeckt Henri Becquerel die Radioaktivität, und stellt fest, dass sich Atome umwandeln können.
  • 1897 - Joseph John Thomson - Entdeckung des Elektrons
Bei einem Versuch mit Strom stellte der britische Physiker Thomson fest, dass Strahlen in Vakuumröhren aus kleinen Teilchen bestehen. Damit war ein erster Bestandteil der Atome gefunden, obwohl man von der Existenz der Atome immer noch überzeugt war. Eine Besonderheit war die Entdeckung vor allem deshalb, weil man dachte, Strom wäre eine Flüssigkeit.
  • 1898 - Marie und Pierre Curie - Radioaktivität
Immer mehr Forscher beschäftigten sich mit den kleinsten Teilchen. Die Curies untersuchten unter anderem Uran, das sie aus Pechblende gewannen. Die Uran-Atome zerfallen unter Abgabe von Wärme und Strahlen, die man als Radioaktivität (von radius = Strahl) bezeichnet. Marie Curie erkannte, dass sich Elemente bei diesem Zerfall verwandeln. (Die Radioaktivität wurde 1896 von Henri Becquerel entdeckt.)
  • 1900 - Ludwig Boltzmann - Atomtheorie
Boltzmann war ein theoretischer Physiker, der die Ideen von Demokrit umsetzte. Er berechnete aus der Idee der Atom-Existenz einige Eigenschaften von Gasen und Kristallen. Da er allerdings keinen experimentelle Beweis lieferte, waren damals seine Ideen umstritten.
  • 1900 - Max Planck - Quanten
Der Berliner Physiker Planck untersuchte die Schwarzkoerperstrahlung. Bei der theoretischen, thermodynamischen Begruendung seiner Formel führte er die sog. Quanten ein und wurde somit zum Begründer der Quantenphysik.
  • 1906 - Ernest Rutherford - Experimente
Der Physiker Ernest Rutherford ging im Gegensatz zu Boltzmann und Planck experimentell auf die Suche nach den Atomen. 1906 entdeckte er mit dem rutherfordschen Experiment, dass Atome nicht massiv sind, ja sogar im Grunde fast gar keine Substanz besitzen. (Damit ist das Wort "Atom" für das, was es bezeichnet, im Grunde falsch. Es wurde aber beibehalten.) Aus dem Experiment leitete Rutherford bis 1911 die genaue Größe eines Atoms, also der Atomhülle und der Größe des Atomkerns ab. Ferner konnte er ermitteln, dass der Atomkern die positive Ladung, die Atomhülle eine entsprechende negative Ladung trägt. So entdeckte er das Proton.
  • 1913 - Niels Bohr - Schalenmodell
Aus dem rutherfordschem Atommodell entwickelte der dänische Physiker Niels Bohr ein planetenartiges Atommodell. Danach bewegen sich die Elektronen auf bestimmten Bahnen um den Kern, wie Planeten die Sonne umkreisen. Die Bahnen werden auch als Schalen bezeichnet. Das besondere daran war, dass die Abstände der Elektronen-Bahnen streng-mathematischen Gesetzmäßigkeiten folgen.Die Bahnen besitzen verschiedene Radien, und jede Bahn besitzt eine maximale Kapazität für Elektronen. Atome streben Bohr zufolge an, dass alle Bahnen komplett besetzt sind. Damit haben sich sowohl viele chemische Reaktionen erklären lassen als auch die Spektrallinien des Wasserstoffs. Da sich das Modell für komplexere Atome als unzureichend erwies, wurde es 1916 von Bohr und dem deutschen Physiker Arnold Sommerfeld insofern verbessert, als man nun für bestimmte Elektronen exzentrische, elliptische Bahnen annahm. Das bohr-sommerfeldsche Atommodell erklärt viele chemische und physikalische Eigenschaften von Atomen.
  • 1929 - Erwin Schrödinger, Werner Heisenberg und andere - Das Orbitalmodell
Aufbauend auf Schrödingers Wellenmechanik und Heisenbergs Matrizenmechanik wurde ein weiteres, bis heute modernes Atommodell entwickelt, das weitere Unklarheiten beseitigen konnte.
  • 1929 - Ernest O. Lawrence - Der erste Teilchenbeschleuniger, das Zyklotron
Um Informationen über den Aufbau der Atomkerne zu bekommen, wurden die Kerne mit Strahlen beschossen. Um nicht auf die schwache natürliche Strahlung angewiesen zu sein, entwickelte Lawrence das Zyklotron. Geladene Teilchen wurden auf kreisförmigen Bahnen beschleunigt.
  • 1932 - Paul Dirac und David Anderson - Antimaterie
Der theoretische Physiker Paul Dirac fand eine Formel, mit der sich die Beobachtungen der Atomphysik beschreiben lassen. Allerdings setzte diese Formel die Existenz von Anti-Teilchen voraus. Diese Idee stieß auf heftige Kritik, bis der amerikanische Physiker Anderson in der kosmischen Strahlung das Positron nachweisen konnte. Dieses Anti-Teilchen zum Elektron hat eine positiver Ladung aber die gleiche Masse wie ein Elektron. Treffen ein Teilchen und sein Anti-Teilchen zusammen, zerstrahlen sie sofort als Energie gemäß der Formel E = m*c2. 1932 wurde dann noch das Neutron von dem englischen Physiker James Chadwick entdeckt.
  • 1933 - Marie und Pierre Curie - Materie aus Energie
Eher zufällig beobachten die Eheleute Curie, dass sich nicht nur Masse in Energie umwandeln lässt. In einem Experiment verwandelte sich ein Lichtstrahl in ein Elektron und ein Positron.
  • 1938 - Otto Hahn und Lise Meitner - Die erste Kernspaltung
Der deutsche Chemiker Hahn, ein Schüler Rutherfords, untersuchte weiter die Atomkerne. Dazu beschoss er Uran-Atome mit Neutronen und erhielt Cäsium und Rubidium oder Strontium und Xenon. Was eigentlich passierte konnte er nicht erklären. Dies gelang jedoch seiner Mitarbeiterin Lise Meitner, die aufgrund ihrer jüdischen Religion vor den Nazis nach Schweden geflohen war. Sie stellte fest, dass die Summe der Kernteilchen (Protonen und Neutronen) bei den Produkten der des Urans entspricht. Hahn erhielt dafür den Nobelpreis, erwähnte seine Mitarbeiterin aber mit keinem Wort.
  • 1938 - Hans Bethe - Kernfusion in der Sonne
Neben zahlreichen Beiträgen zum Aufbau der Atome erforschte der in Straßburg geborene Bethe die Energieproduktion in Sternen. Er stellte fest, dass in unserer Sonne zwei Wasserstoff-Atomkerne miteinander verschmelzen, während in größeren und helleren Sternen Kohlenstoff-Kerne in die schwereren Stickstoff-Kerne verwandelt werden. Bethe arbeitete auch in Los Alamos mit, wurde aber nach dem Krieg ein engagierter Gegner von Massenvernichtungswaffen, so wandte er sich auch an den späteren amerikanischen Präsidenten Clinton
  • 1942 - Enrico Fermi - Der erste Kernreaktor
Der italienische Physiker Fermi erkannte die Möglichkeit, die Kernspaltung für eine Kettenreaktion zu nutzen. Die bei der Spaltung von Uran freiwerdenden Neutronen, konnten für die Spaltung weiterer Kerne verwendet werden. Damit legte Fermi die Grundlagen, sowohl für die kriegerische Nutzung der Kernenergie in Atombomben als auch friedliche Nutzung in Kernreaktoren. Fermi baute den ersten funktionierenden Kernreaktor.
  • 1942 - Werner Heisenberg - Atomforschung für die Nazis
Die Nazis beauftragten den Physiker Heisenberg eine Atombombe zu entwickeln. Durch einen Rechenfehler misslang ihm dies aber. Bei der Berechnung der kritischen Masse verrechnete er sich um den Faktor 1000.
  • 1942 - Albert Einstein und Leo Szilard - Roosevelt soll die Atombombe bauen
Eigentlich hat Einstein selber nicht zum Bau der Atombombe beigetragen. Er unterstützte aber einen Brief an den amerikanischen Präsidenten Roosevelt, dass die Entwicklung der Atombombe unbedingt noch vor den Nazis beendet werden solle. Auch der ungarische Universalgelehrte Szilard erkannte die Gefahr, die von einer deutschen Atombombe ausging. Er lieferte zwar wichtige Ideen für den Bau der Atombombe, war aber an deren Entwicklung in Los Alamos nicht beteiligt. Auch später warnte Szilard noch vor dem Gebrauch der Atombombe.
  • 1945 - J. Robert Oppenheimer - Die erste Atombombe
Oppenheimer war der Organisator, der in Los Alamos die besten Physiker und Ingenieure versammelte. So gelang innerhalb kürzester Zeit der Bau einer Atombombe, das Manhattan-Projekt. Nach dem Einsatz der Atombombe in Hiroshima wurde Oppenheimer zum Gegner von Atombomben.
  • 1952 - Edward Teller - Die Wasserstoffbombe
Der ungarische Physiker Teller war Mitarbeiter von Oppenheimer. Allerdings hatte er eine weitergehende Idee. Er wollte eine Bombe auf der Basis der Kernfusion bauen, die Bethe in der Sonne nachgewiesen hat. Aus Angst vor dem Kommunismus wurde Teller zu einem Rüstungsfanatiker und entwickelte die Wasserstoffbombe.
  • 1960 - Donald A. Glaser - Die Blasenkammer
Nach dem Kriegsende konzentrierte sich die Forschung auf den Aufbau der Elementarteilchen. Mit der Entwicklung der Blasenkammer hatte man nun eine Möglichkeit, die kleinsten Teilchen, die in Teilchenbeschleunigern entstanden, zu "sehen".
  • 1964 - Murray Gell-Mann - Die Quarks
Mit Hilfe der Blasenkammer konnte auf einmal eine riesige Anzahl an bisher unsichtbaren Teilchen sichtbar gemacht werden, die Widersprüche zu der bisherigen Physik darstellte. Um dies zu erklären, postulierte der Physiker Gell-Mann Grundbausteine, aus denen die Kernbausteine aufgebaut sein sollen. Mittlerweile gibt es sehr viele Indizien für die Existenz der Quarks, auch wenn sie einzeln nicht zu beobachten sind.
  • 1978 - Der Fusionsreaktor
Um die riesigen Mengen an Energie zu nutzen, die bei einer Kernverschmelzung (Kernfusion) frei werden, versuchte man, die Fusionsenergie gezielt zu nutzen. Die Kernverschmelzung (Kernfusion) gelang erstmals mit Teilchenbeschleunigern. Derzeit laufen Versuche, Kernfusionsreaktoren herzustellen, bislang konnte aber nur für sehr kurze Zeit mehr Energie gewonnen werden, als in den Prozess hineingesteckt wurde
  • 1995 - Eric Cornell, Wolfgang Ketterle und Carl Wiemann - Das Bose-Einstein-Kondensat
In einem ultrakalten Gas aus Rubidium-Atomen wird erstmals ein Bose-Einstein-Kondensat hergestellt, ein bereits von Einstein vorhergesagter Zustand der Materie.
  • 2000 - CERN - Das Higgs-Boson
Das Kernforschunngszentrum CERN in Genf forscht in ihrem Beschleuniger nach dem Higgs-Boson, das als Erlöser-Teilchen bezeichnet wird und dessen Existenz die bestehenden Theorien zur Elementarteilchenphysik bestätigen soll. Bisher gibt es keine eindeutigen experimentellen Belege für die Existenz des Higgs-Bosons.
  • 2002 - Brookhaven - seltsame Materie
Im Schwerionenbeschleunigerring RHIC im amerikanischen Brookhaven prallen Goldionen hoher Energie aufeinander. Dabei sollen sie für extrem kurze Zeit und in einem sehr kleinen Raumbereich ein Quark-Gluonen-Plasma erzeugen. Dies ist ein Zustand der Materie, der heute in der Natur nicht mehr vorkommt, aber vermutlich unmittelbar nach dem Urknall existierte.

Die symbolische Schreibweise

Bearbeiten

Im Periodensystem werden die Atome in einer besonderen Schreibweise dargestellt. Sie ist leicht zu verstehen:

He besteht aus: 2 Protonen, 2 Elektronen und 2 Neutronen(Massenzahl-Ordnungszahl)

Li besteht aus: 3 Protonen, 3 Elektronen und 4 Neutronen(Massenzahl-Ordnungszahl)

Aufgaben:

  1. Berechne für folgende Beispiele die Anzahl an Elementarteilchen: Na, Mg, Ca, Ba, Al, I

Anordnung der Elementarteilchen im Atomkern

Bearbeiten

Nachdem Du nun weißt, welche Elementarteilchen im Atom zu finden sind, wird es Zeit, sich Gedanken über deren Anordnung zu machen. Doch Vorsicht, niemand kann genau erklären wie es im Atom aussieht und man braucht sehr viel Vorstellungskraft, um sich nur ein ungefähres Bild davon zu machen. Vielleicht helfen Dir die angegebenen Vergleiche. Zusätzlich erschwerend ist, dass es verschiedene Modelle gibt, die nacheinander entstanden sind. In Schulbüchern ist oft das Atommodell von Niels Bohr genannt - lass Dich dadurch nicht verwirren. Es ist falsch![3]

Aufbau des Wasserstoffatoms

Bearbeiten

Das Wasserstoffatom hat ein Proton und demzufolge ein Elektron. Im Zentrum des Atoms befindet sich der Atomkern, er enthält ein Proton. Um ihn herum bewegt sich ein einzelnes Elektron. Das Elektron bewegt sich um den Kern und hat demzufolge immer unterschiedliche Abstände zum Atomkern. Da es sich zu 95% fast immer innerhalb eines bestimmten Abstandes um das Atom bewegt und dieser einer Art Kugel gleicht, spricht man auch von einer Elektronenhülle oder Elektronenwolke oder auch einem Atomorbital. Die Form ist dabei immer von der Aufenthaltswahrscheinlichkeit des Elektrons abhängig. In den Modellen von Niels Bohr werden die Elektronenwolken auch als Schalen bezeichnet.

Frei bewegliche Elektronen umkreisen den Atomkern

Aufbau des Lithiumatoms

Bearbeiten

Das Lithiumatom hat drei Protonen, 4 Neutronen und drei Elektronen. Die Neutronen sind ungeladen und befinden sich zwischen den Protonen. Eine Modellvorstellung beschreibt sie als „Protonenkitt“, also als Klebstoff, der die sich abstoßenden positiven Protonen im Kern zusammenhält. Nicht alle Elektronen können sich gleich weit vom Atomkern entfernen. Also gibt es durch die unterschiedlichen Aufenthaltswahrscheinlichkeiten auch unterschiedliche Elektronenwolken. In der ersten Elektronenhülle ist nur "Platz" für zwei Elektronen. Wenn sie voll besetzt ist, dann entsteht automatisch eine neue. In jeder weiteren ist Platz für mindestens 8 Elektronen. Die Elektronen der äußersten Hülle nennt man auch Valenzelektronen oder Außenelektronen.

Bei chemischen Reaktionen sind in der Regel nur die Valenzelektronen beteiligt. Elemente mit der gleichen Anzahl an Valenzelektronen ( gleiche Hauptgruppennummer) haben meist ähnliche Eigenschaften. Die Anordnung der Elektronen nennt man Elektronenkonfiguration.

Aufbau des Kohlenstoffatoms (C)

Bearbeiten

Das Kohlenstoffatom hat 6 Elektronen, 6 Neutronen und 6 Protonen:

Aufbau des Natriumatom (Na)

Bearbeiten

Das Natriumatom hat 11 Elektronen in drei Elektronenwolken. Wie Du erkennen kannst, sind die Elektronenwolken farbig, entsprechend den Farben der Perioden Deines PSE gefärbt.

Zusatzinfos: Atombau

Bearbeiten
Wikipedia hat einen Artikel zum Thema:


Wikipedia hat einen Artikel zum Thema:


Wichtige Aufgaben:

Bearbeiten
  1. Zeichne selbst den Aufbau der folgenden Atome: H, He, Li, Na, Mg, Ca, Ba, Al, I
  2. Welcher Zusammenhang besteht zwischen der Anzahl an Elektronenwolken und der Periodennummer?
  3. Besteht ein Zusammenhang zwischen der Anzahl an Valenzelektronen und dem PSE?
  4. Wie erklärst Du Dir, dass das Verhältnis von Protonen zu Neutronen bei Zunahme der Ordnungszahl kleiner wird (z.B. Kohlenstoff hat 6p+ und 6n 1:1=1; Blei hat 82p+ und 126n 82:126=0,65)?

Geschichtliche Entwicklung der Modelle zum Aufbau der Elektronenhülle

Bearbeiten

Chemiker kennen heute viele Modelle zum Beschreiben der winzigen Atome. Jedes Modell hat Vor- und Nachteile. Lass Dich nicht durch die Vielfalt verwirren und benutze immer das, was Du in der Schule gelernt hast. Letztlich sind alles Modelle, die nur etwas nicht sichtbares verdeutlichen sollen. Aber es ist gar nicht so einfach, sich das immer vorzustellen...

Bohrsches Atommodell

1913 Niels Bohr: „Elektronen kreisen als Teilchen auf Bahnen (planetengleich) um den Atomkern“ Jede Bahn entspricht dabei einem bestimmten Energiezustand des Elektrons

1924 Louis de Broglie: „ Jedes sich bewegende Teilchen, hat neben den Teilchen­eigenschaften auch Welleneigenschaften.“ (Diese werden wichtiger, je kleiner das Teilchen wird) (=Welle-Teilchen-Dualismus)

Elektronen (auch Photonen) haben:
  • Teilcheneigenschaften
  • Welleneigenschaften (Beweis: ihre Wellenlänge ist messbar!)
Vergleich dies mal mit einer Interferenz: Wellen könne sich auslöschen, für Teilchen gilt das nicht. Je nach Experiment und Aufbau kann man also vom Teilchen- oder Wellencharakter der Elektronen ausgehen.

Bohr hat hingegen nur den Teilchencharakter des Elektrons berücksichtigt.

1926 Heisenberg: „Wenn de Broglie recht hat, kann man nicht die Position und die Geschwindigkeit eines Elektrons bestimmen, da man nicht gleichzeitig beides messen kann! (=Unschärferelation).
die Wellenlänge ändert sich.

Vergleich Radarfalle [4]

Man kann nicht wissen, wie sich kleine Teilchen, wie z. B. Elektronen bewegen. Somit ist auch sicher, dass sie sich nicht auf Bahnen (siehe Bohr) bewegen. Man kann aber sagen, dass für so kleine Teilchen die Gesetze der klassischen Mechanik nur beschränkt Gültigkeit haben. Dies macht eine eigene Vorstellung für Chemiker so schwierig.

1928 Schrödinger: Der Aufenthaltsbereich des e- ist die so genannte Elektronenwolke[5] (=Orbital)

Elektronenverteilung nach Schrödinger
Elektronenverteilung nach Schrödinger

Edelgase und Edelgaskonfiguration

Bearbeiten

„Edelgase“ ist der Begriff für die Elemente der 8. Hauptgruppe. (Helium, Neon, Argon, Krypton, Xenon und Radon). Edelgase sind im Gemisch Luft zu finden. Nach ihrem Anteil sortiert, steht an erster Stelle Argon. Es folgen Neon, Helium, Krypton und Xenon. Radon tritt nur in kleinsten Mengen als Produkt radioaktiver Zerfallsprozesse auf. Im All findet man neben Wasserstoff sehr viel Helium.

Alle Edelgase sind farb-, geschmack- und geruchlose Gase, die eigentlich nur elementar (nicht vereinigt) und einatomig vorkommen. Sie lassen sich in Wasser auflösen und sind aufgrund ihrer Ähnlichkeit und Reaktionsträgheit fast nicht zu unterscheiden. Sie kondensieren erst bei Temperaturen tiefer als -100°C. Helium hat den niedrigsten Schmelz- und Siedepunkt aller Elemente. Aufgrund dieser Eigenschaft wurden sie als Element erst sehr spät entdeckt.

Eigenschaft
Atommasse [u] 4.0 20,2 39,9 83,8 131,3
Dichte [g/l] 0,17 0,84 1,66 3,48 5,49
Schmelzpunkt [°C] -272,3 -248,6 -189,4 -156,5 -111,8
Siedepunkt [°C] -269,0 -246,0 -185,9 -153,9 -107,1
Leuchtfarbe in Leuchtröhren gelb rot rot gelbgrün violett
Verwendungszweck
  • Füllgas für Ballons
  • Zusatz für Atemluft bei Tiefseetauchern
  • Leuchtstoffröhren
  • Glühlampenfüllgas
  • Schutzgasschweißen
  • Glühlampenfüllgas
 

Edelgase (8. HG) sind die reaktionsträgsten Elemente. Alle Edelgase haben eine vollbesetzte Außenelektronenwolke. Edelgase werden deshalb auch als reaktionsträge Gase bezeichnet.

Aus der Trägheit der Edelgase folgt, dass eine Anordnung mit voll besetzter
Außenelektronenwolke besonders stabil sein muss (=Oktettregel).

Diese Edelgaskonfiguration ist von allen Elementen angestrebt. Entscheidend ist dafür nur die Anzahl an Valenzelektronen (2 bei He oder 8 bei allen anderen!)

Unter besonderen Bedingungen kann man im Labor Xe und Kr zur Reaktion mit anderen Elementen bewegen. Dazu sind sehr hohe Ionisierungsenergien notwendig. Von den leichten Edelgasen Helium, Neon und Argon sind keine Verbindungen bekannt. Linus Pauling wies 1933 schon darauf hin, dass Xenon eine ähnlich (hohe) 1. Ionisierungsenergie wie Sauerstoff hat. 1962 wurde von Bartlett dann mit Xenonhexafluor die erste Edelgasverbindung dargestellt. Man heute kennt bereits 32 Edelgasverbindungen:

,, , , ,,

Das Periodensystem der Elemente: Die Geschichte des PSE

Bearbeiten
Demokrit (460-370 v. Chr.)

Der Grieche vermutete allein durch Beobachtungen der Natur, dass es Aufbausteine für alle Stoffe (heute würde man sie Atome nennen) gibt.

Robert Boyle (1627-1691)

Der Engländer zeigte als erster, dass nicht Feuer, Wasser, Erde und Luft die chemischen Elemente sind. Er vermutete, dass es mehr geben muss. Sonst wäre die Vielfalt der Natur nicht zu erklären. Er vermutete, dass solche Stoffe, die man nicht mehr in zwei verschiedene andere Stoffe umwandeln kann, Elemente sind. So kann man pflanzlichen Zucker durch Erhitzen in Kohlenstoff umwandeln. Diesen konnte er aber nicht weiter zersetzen, so bestimmte er, dass Kohlenstoff ein Element sei.

Antoine Lavoisier (1743-1794)

Der Franzose Lavoisier übernahm Boyles Elementdefinition und erweiterte sie. Er unterschied Elemente (matière) und deren Fähigkeit Verbindungen zu bilden (principe). Es gibt also nach Lavoisier keine Stoffe, in denen matière und principe zusammenfielen.

William Prout (1785-1850) und Jeremias Benjamin Richter (1762-1807) Der Engländer Prout und der deutsche Richter stellen die Gesetzte der einfachen und vielfachen Massenverhältnisse auf. So reagieren 2g Schwefel immer mit 2g Sauerstoff zu 4g Schwefeldioxid oder auch (bei anderen Reaktionsbedingungen) mit 3g Sauerstoff zu 5g Schwefeltrioxid

John Dalton (1766-1844)

Der Engländer stellte eine Atomhypothese auf, die Atome und ihre Reaktionen beschrieb. Er verband diese mit den Massengesetzen von Prout und Richter, um sie zu erklären.

Jöns Jakob Freiherr von Berzelius, (1779-1848)

Der Schwede Berzelius nannte Reinstoffe, die nicht durch eine Vereinigung entstanden sind „Elemente“. Stoffe, die durch eine Vereinigung entstehen, nannte er „Verbindung“. Er stellte die noch immer gültige Definition auf: „Ein Element ist ein Reinstoff, der nicht weiter zersetzt werden kann“. Für Elemente legte er neue Symbole fest, die sich vom lateinischen oder griechischen Namen ableiteten (z. B. Wasserstoff = Hydrogenium = H) Da man nun endlich die Kenntnisse der Chemie vernünftig ordnen konnte, wurde der Wunsch nach einem einheitlichen Ordnungssystem immer größer.

Dimitri Mendelejew (1834-1907) und Lothar Meyer (1830 - 1895)

Der Russe Mendelejew und der Deutsche Lothar Meyer ordneten 1869 als erstes die damals etwa 60 bekannten Elemente nach ihrer Masse. Allerdings fiel auf, dass sich manchmal Eigenschaften der Elemente wiederholten. Diese Elemente schrieb Mendelejew übereinander. So kam er zu einer tabellarischen Anordnung von 7 Gruppen. Manchmal erhielt er allerdings Lücken in seiner Tabelle. Er vermutete, dass es noch unentdeckte Elemente geben musste. (Germanium, Gallium und Scandium). Die 8. Gruppe des PSE (Edelgase) konnten sie nicht aufstellen, da die Edelgase noch nicht entdeckt waren.

Nils Bohr (1885-1962)

Der Däne Bohr forschte an einzelnen Atomen und beschäftigte sich mit deren Zusammensetzung. Er stellte ein nach ihm benanntes Atommodell auf. Gleichzeitig fing er an diese Atome nach ihrer Anzahl an Protonen zu ordnen. (Henry G.J. Mosley bestimmte 1913 mit Hilfe von Röntgenstrahlen erstmalig die Anzahl an Protonen in Atomen). Deshalb nannte er die Protonenzahl auch Ordnungszahl.

Dieses neue Periodensystem war dem von Mendelejew sehr ähnlich. Nur geringe Änderungen mussten vorgenommen werden.

Die historische Entwicklung des Periodensystems der Elemente (=PSE)

Bearbeiten

Nach:

Wikipedia hat einen Artikel zum Thema:


Dmitri Iwanowitsch Mendelejew (8.2.1834- 2.2.1907) war ein russischer Chemiker, der auf der Suche nach einer Systematik der chemischen Elemente war.

Zwischen 1859 und 1861 arbeitete er in Paris über die Dichte der Gase und an der Universität Heidelberg beschäftigte er sich bei Gustav Robert Kirchhoff mit der neuen Untersuchungsmethode der Spektroskopie. Er promovierte 1865 in Chemie in Sankt Petersburg. Sein Bestreben war, die damals bekannten 63 Elemente in einem System zu ordnen. Eine Hilfe war, dass 1866 ein Kollege, der Chemiker John A.R. Newland, das Oktavgesetz vorschlug:

„Wenn die Elemente nach steigender relativer

Atommasse geordnet werden, dann ist das

achte Element dem ersten ähnlich.“


Dmitri Mendelejew und der Deutsche Lothar Meyer griffen 1869 dieses Gesetz auf und ordneten die Elemente in einer sich periodisch wiederholenden Anordnung in 7 Gruppen an. Mendelejew ordnete die Elemente dabei so an, dass ähnliche Merkmale in den gleiche Gruppen zusammenstehen. Damit dies aber immer aufging, musste er noch 3 Felder frei lassen. Er vermutete, dass diese drei Elemente noch nicht entdeckt waren. Durch seine genauen Forschungen konnte er für diese unbekannten Elemente (Gallium, Scandium und Germanium) allerdings schon einige Vorhersagen über ihre Eigenschaften treffen. Hier zeigte sich sein wahres Genie. Seine Vorhersagen zu Schmelz- und Siedepunkten waren von großer Genauigkeit und Präzision.

1867 wurde er Professor für Chemie an der Universität Sankt Petersburg. Am 6. März 1869 veröffentlichte er das Periodensystem der Elemente (PSE) unter dem Titel „Die Abhängigkeit der chemischen Eigenschaften der Elemente vom Atomgewicht“. Damit vollendete Mendelejew vorläufig die 50-jährige Suche nach einem Zusammenhang zwischen den Atomgewichten und den chemischen Eigenschaften der chemischen Elemente. Zu seinen Ehren bekam das Element 101 den Namen Mendelevium.

In zwei Punkten lag Mendelejew’s leider falsch. Die Anordnung der Elemente ____ und ____ sowie ____ und ____ nach ihrer relativen Atommasse entsprach nicht der Anordnung nach ihren Eigenschaften. Man findet im heutigen PSE sogar noch ein weiteres Paar: ____ und ____ .

Die Auflösung war erst möglich, als Henry G.J. Mosley 1913 begann das PSE nach der Anzahl an Protonen/ Elektronen zu ordnen. Mit Hilfe von Röntgenstrahlen gelang es ihm die Ordnungszahl der Elemente zu bestimmen und das heute gültige PSE, geordnet nach der Protonenzahl, aufzustellen.

Heute gelten folgende Regeln:


Das PSE ist nach steigender _______________und nicht nach steigender ____________ angeordnet. Dabei stehen Elemente mit ähnlichen ______________ übereinander. So ergibt sich ein Aufbau des PS in ________________ und ___________________ . (Die __________ -Nummer entspricht dabei der Anzahl an Elektronenwolken, die _____________ - Nummer entspricht der Anzahl an Außenelektronen bzw. Valenzelektronen). Von Element zu Element nimmt dabei die Anzahl an Valenzelektronen stets um 1 zu. Daraus resultieren wesentliche Änderungen in den Eigenschaften der Elemente. Die Valenzelektronen sind somit maßgeblich für die Eigenschaften der Elemente verantwortlich.

Zusatzinformationen zu Mendelejew

Bearbeiten

Mendelejew war zugleich der Vater der russischen Ölindustrie. Bereits in den 1860er Jahren besuchte er die Ölfelder bei Baku in Aserbaidschan. 1876 reiste er im Auftrag der russischen Regierung in die USA, um die Ölförderung in Pennsylvania zu studieren und Empfehlungen für die Ausbeutung der russischen Reserven zu geben. Nach seiner Rückkehr erfand er neue Methoden zur Raffinierung des Öls. Seine Empfehlungen fasste er in dem Werk „Die Erdölindustrie in Pennsylvania und im Kaukasus zusammen“.

Mendelejew war ein Liberaler. In seinen Vorlesungen waren anders als bei seinen Kollegen auch Frauen zugelassen. Regelmäßig machte er Eingaben an die Regierung, wandte sich gegen die zaristische Bürokratie und politische Repressionen. Seine Informationen beschaffte er sich bei Bahnreisen durch Russland, auf denen er stets dritter Klasse reiste. 1890 trat er aus Protest gegen die Einschränkung der universitären Autonomie als Professor zurück. 1893 wurde er auf Betreiben des Finanzministers Direktor des Russischen Amts für Maße und Gewichte, führte das metrische System in Russland ein. Er starb im Januar 1907 an den Folgen einer Grippe. An seiner Beerdigung auf dem Petersburger Wolkowo-Friedhof nahmen mehrere tausend Menschen teil.

Mendelejew war zweimal verheiratet und hatte mehrere Kinder. Er sprach russisch, deutsch und französisch.

Die Kernthesen zu seinem Vortrag vor der Russischen Gesellschaft für Chemie im März 1869:

  1. Die nach Atomgewicht aufgereihten Elemente zeigen Periodizität in ihren Eigenschaften und ihrem Verhalten.
  2. Elemente mit gleichem Verhalten haben fast das gleiche Atomgewicht (zum Beispiel Platin, Iridium, Osmium) oder das Atomgewicht erhöht sich gleichmäßig (zum Beispiel Kalium, Rubidium, Cäsium).
  3. Die Anordnung der Elemente oder Gruppen von Elementen entspricht ihrer Wertigkeit und, bis auf einige Ausnahmen, ihrem charakteristischen Verhalten.
  4. Die am häufigsten vorkommenden Elemente haben kleine Atomgewichte.
  5. Das Atomgewicht bestimmt die Eigenschaften des Elements, so wie die Eigenschaften eines Moleküls von seiner Größe bestimmt werden.
  6. Die Entdeckung weiterer Elemente ist zu erwarten, beispielsweise die Analogen zu Aluminium und Silizium mit einem Atomgewicht zwischen 65 und 75.
  7. Das Atomgewicht einiger Elemente kann durch diese Anordnung korrigiert werden. Zum Beispiel muss das Atomgewicht des Tellurs zwischen 123 und 126 liegen. Es kann nicht 128 betragen.
  8. Einige charakteristische Eigenschaften lassen sich aufgrund des Atomgewichts vorhersagen.

Mendelejew schrieb später einmal, beim Verfassen eines Chemiebuches habe er nach einer Einteilung der chemischen Elemente gesucht. Neben dem Atomgewicht habe er sich von ihren Eigenschaften leiten lassen:

  • Ähnlichkeiten bei der Bildung von Verbindungen
  • Elektrochemisches Verhalten und Wertigkeit
  • Kristallform der Verbindungen
  • Neigung zur Isomorphie

Isotope des Wasserstoffs

Bearbeiten

Alle Atome eines Elementes haben die gleiche Ordnungszahl und somit die gleiche Anzahl an Protonen, aber bei einigen Elementen kommt es vor, dass sie sich in ihrer Masse unterschieden. Sie haben eine unterschiedliche Anzahl von Neutronen. Diese Elemente nennt man Isotope. Zum Beispiel enthält das häufigste Isotop von Wasserstoff keine Neutronen (siehe Tabelle). Sehr selten findet man aber auch ein Wasserstoffatom mit einem Neutron (z. B. in Kernkraftwerken). Man spricht von schwerem Wasserstoff. Oder auch von Deuterium. Ein weiteres Isotop hat zwei Neutronen. Es heißt Tritium.

Übersicht über die bekanntesten Wasserstoffisotope:

Eigenschaft
Name Wasserstoff Deuterium Tritium
Kernteilchen / 0 n / 1 n / 2 n
Aufbau
Häufigkeitsverteilung 1 0,00015
Massenzahl 2,015 4,028 6,032
Schmelztemperatur -259,22 -254,43 -252,53
Siedetemperatur -252,77 -249,58 -248,11

Die Isotope des Wasserstoffes sind also durchaus durch ihre Eigenschaften zu unterscheiden

Isotope gibt es nicht nur vom Wasserstoff:

Atommasse = 34,969u   Atommasse= 36,996u
Atome gleicher Ordnungszahl, aber unterschiedlicher Neutronenanzahl nennt man Isotope. Im PSE ist immer die mittlere Atommasse angegeben.

Zusatzinfos: Isotope

Bearbeiten

In der Regel besitzt jedes natürlich vorkommende Element ein oder wenige stabile Isotope, während die anderen Isotope radioaktiv (das heißt instabil) sind und früher oder später zerfallen. Es gibt jedoch auch Elemente, bei denen alle Isotope instabil sind und zerfallen. Mit 10 stabilen Isotopen hat Zinn die meisten natürlich vorkommenden Isotope. Bei 20 so genannten Reinelementen gibt es nur ein einziges stabiles Isotop. Diese Elemente sind: Beryllium, Fluor, Natrium, Aluminium, Phosphor, Scandium, Mangan, Kobalt, Arsen, Yttrium, Niob, Rhodium, Iod, Cäsium, Praseodym, Terbium, Holmium, Thulium, Gold, Bismut.

Ein bekanntes Isotop ist , das zur Altersbestimmung von organischen Materialien in der Archäologie benutzt wird (Radiokarbonmethode). Kohlenstoff liegt hauptsächlich als stabiles Isotop vor.

Bei natürlich vorkommenden Isotopen hat ihr Verhältnis immer den gleichen Wert. Chlor besteht z. B. immer aus 75,77% aus (34,969u) und 24,23% (36,996u)

Wikipedia hat einen Artikel zum Thema:


Berechnung mittlere Atommasse

Bearbeiten

: 75,77% : 24,23%

mittlere Atommasse: 35,453u [6]

Elektronen, Protonen, α-Teilchen und Isotope der leichteren Elemente

Bearbeiten
Ordnungszahl Symbol Element Massenzahl Masse in u ideale Häufigkeit Halbwertszeit Strahlung
- Elektron 0 0,0005486      
- n Neutron 1 1,008665      
1 Proton 1 1,007276 99,985    
1 Wasserstoff 1 1,007825 99,985    
  Deuterium 2 2,014102 0,015    
  Tritium 3 3,014949   12,26 a
2 α-Teilchen 4 4,001507      
2 Helium (3) 3 3,016030 0,00013    
  Helium 4 4,002604 99,99987    
    5 5,012296   n,α
    6 6,018900   0,81 s
    7    
3 Lithium 5 5,012541   ca. 10-21 s
    6 6,015126 7,42    
    7 7,016005 92,58    
    8 8,022488   0,85 s
    9 9,022488   0,17 s
4 Beryllium 6 6,019780    
    7 7,016931   53 d γ
    8 8,005308   α
    9 9,012186 100    
    10 10,013535  
    11 11,021660  
5 Bor 8 8,024612   0,78 s
    9 9,013335    
    10 10,012939 19,6    
    11 11,009305 80,4    
    12 12,014353   0,020 s
    13 13,017779   0,035 s
6 Kohlenstoff 10 10,016830   19 s
    11 11,011433  
    12 12,000000 98,89    
    13 13,00345 1,11    
    14 14,003242   5760 a
    15 15,010600   2,25 s
    16 16,014702   0,74 s
7 Stickstoff 12 12,018709   0,011 s
    13 13,002739   10,0 min
    14 14,003074 99,63    
    15 15,000108 0,37    
    16 16,006089   7,35 s
    17 17,008449   4,14 s

Die Verteilung der Elektronen in der Atomhülle

Bearbeiten

Übung: Flammenfärbung

Bearbeiten

Welche Energieformen kennst Du bereits, die bei chemischen Reaktionen ein Rolle spielen? Wärmeenergie, Schallenergie, Bewegungsenergie, Lageenergie, Lichtenergie, usw.)

Material || je Gruppe: Magnesia-Stäbchen, Bunsenbrenner, evtl. Tiegelzange
  Testsubstanzen, Spatel, Pinzette, verd. HCl, ca. 8 beschriftete Schälchen

Versuchsbeschreibung

Glühe ein Magnesiastäbchen aus und tauche es kurz in eine leicht saure Lösung, die jeweils eines der folgenden Salze enthält: Natriumnitrat, Natriumcarbonat, Kaliumcarbonat, Kaliumchlorid, Calciumsulfat, Calciumcarbonat, Strontiumnitrat, Bariumnitrat. Dann halte das Stäbchen in die Brennerflamme. Notiere alle Beobachtungen in Tabellenform.

Salz Testsubstanz Farbe
Natriumnitrat NaNO3 gelb
Natriumchlorid NaCl gelb
Natriumcarbonat Na2CO3 gelb
Kaliumcarbonat K2CO3 rotorange
Kaliumchlorid KCl rotorange
Calciumsulfat CaSO4 rot
Calciumcarbonat CaCO3 rot
Calciumchlorid CaCl2/sub> rot
Strontiumnitrat Sr2NO3 tiefrosarot
Strontiumchlorid SrCl2 tiefrosarot
Bariumnitrat Ba(NO3)2 grün
Lithiumchlorid LiCl rot
Bariumchlorid BaCl2 grün

Die Flammenfärbung ist jeweils charakteristisch für die Metalle. So lassen sich auch unbekannte Proben anhand ihrer Flammenfarbe identifizieren

Was gechied beim Flammenversuch
Was gechied beim Flammenversuch

Die Energiezustände der Elektronen

Bearbeiten

Energiestufen Aus dem Versuch der Flammenfärbung wird folgendes Energieschema abgeleitet:

Energiestufen-Schema für das Schwefel-Atom
Energiestufen-Schema für das Schwefel-Atom

Als Valenzelektronen werden die Elektronen mit der höchsten Quantenzahl bezeichnet (statistisch haben sie den größten Abstand vom Atomkern (Außenelektronen))

Zusammenhang: Energiegehalt - durchschnittliche Entfernung vom Kern
VE sind die am weitesten vom Kern entfernten Elektronen

Energieniveaus - die Unterteilung der Energiestufen

Bearbeiten

Feinbau: Energiestufen sind in unterschiedliche Energieniveaus aufgetrennt

Hinweis: FOLIE Spektrallinien Gruppen dünner Linien

Vergleich: Stockwerke im Haus = Energiestufen. Man kann nicht wechseln! Aber man kann von einem Niveau auf ein anderes wechseln (auf den Tisch klettern)

Energiestufen-Schema für das Schwefel-Atom
Energiestufen-Schema für das Schwefel-Atom

Besetzungsregeln:

Bearbeiten
  • Die maximale Elektronenzahl für das s-Energieniveau betragt 2 Elektronen, für das p-Energieniveau 6 Elektronen
  • Der Aufbau des Energieniveauschemas erfolgt immer von untern nach oben, d. h. es werden zuerst die geringen Energieniveaus, dann die hohen Energieniveaus besetzt (1s 2s 2p3s 3p)
  • Hinweis: Die VE der ersten und zweiten HG sind immer auf dem s-Energieniveau, die VE der 3-8 HG sind auf dem p-Energieniveau (PSE aufklappen und Hinweis, dass in der 11. Klasse noch was folgt)

Übung: (Schüler stehen entsprechend der Elektronenkonfiguration auf)

Bearbeiten
:   1s2            
:   1s2            
:   1s2 2p2          
:   1s2 2p6          
:   1s2 2p6   3s2 3p4    
:   1s2 2p6   3s2 3p6    

HA 1: Elektronenkonfiguration unter Berücksichtigung der Energieniveaus für und

Wiederholungsfrage: Unterschiede in Elektronenkonfiguration bei den Isotopen

 

Wiederholungsfragen Kapitel 7: Aufbau der Atome (Kern-Hülle-Modell)

Bearbeiten
  1. Wie hat Rutherford seine Aussagen über Atome gewonnen. Beschreibe seinen Versuchsaufbau und nenne seine drei wichtigsten Schlussfolgerungen. Warum hat er als Strahlenquelle Heliumkerne verwendet?
  2. Nenne die Elementarteilen und ordne ihnen ihre Masse und Ladung zu
  3. Erkläre ein Modell zum Aufenthaltsbereich der Elektronen
  4. Zeichne selbst den Aufbau der folgenden Atome: H, He, Li, Na, Mg, Ca, Ba, Al, I
  5. Welcher Zusammenhang besteht zwischen der Anzahl an Elektronenwolken und der Periodennummer?
  6. Nach welchen Kriterien ist das PSE aufgebaut?
  7. Besteht ein Zusammenhang zischen der Anzahl an Valenzelektronen und dem PSE?
  8. Wie erklärst Du Dir, dass das Verhältnis von Protonen zu Neutronen bei Zunahme der Ordnungszahl kleiner wird
    (z. B. Kohlenstoff hat und 6n  1:1=1; Blei hat und 126n  82:126=0,65)?
  9. Der russische Physiker Mendelejew hatte das PSE noch nach der Massenzahl geordnet. Finde im PSE Beweise, dass die Elemente heute nach ihrer Ordnungszahl und nicht nach der Massenzahl geordnet sind.
  10. Was vermutest Du, war der Grund, warum es solange gedauert hat, die Elemente sinnvoll anzuordnen?
  11. Berechne den Anteil an metallischen Elementen im PSE.
  12. Erkläre die Begriffe Hauptgruppe und Elementperiode.
  13. Erkläre die Begriffe „Ordnungszahl“, „Protonenzahl“, „Massenzahl“
  14. Was sind Isotope? Nenne Beispiele!
  15. Warum sind bestimmte Kombinationen von Protonen und Neutronen bei einem Element häufiger zu finden als andere?
  16. Was vermutest Du, ist der Grund, dass es nicht von jedem Element Isotope gibt?
  17. Nenne die verschiedenen Typen Radioaktiver Strahlung und zeige, wie sie entstehen (nur falls im UR besprochen)
  18. Erkläre das Prinzip der Radio-Karbon-Methode (14C-Methode) zur Altersbestimmung (nur falls im UR besprochen)
  19. Was sind Isotope? Nenne Beispiele und vervollständige dann die Tabelle:
 
Protonenzahl          
Elektronenzahl          
Neutonenzahl          
Name Wasserstoff Deuterium Tritium    

  1. Vorgänger war „Lennardt“. Dieser führte den Versuch mit e- durch.
  2. Alphateilchen bestehen aus zwei Protonen und zwei Neutronen, die einem Helium-Atomkern entsprechen. Aufgrund ihrer Ladung und relativ großen Masse haben Alphateilchen nur eine sehr geringe Eindringtiefe (Reichweite) in kompakter Materie. Ein dickeres Blatt Papier oder einige Zentimeter Luft reichen im Allgemeinen schon aus, um Alphateilchen vollständig abzuschirmen.
  3. Die Probleme des Bohr’schen Atommodells ergeben sich im Speziellen aus der Frage der Stabilität der Atome. So liegt hier die Annahme vor, dass die Elektronen sich auf einer Kreisbahn um den Atomkern bewegen. Die Zentripetalkraft wirkt hierbei auf die Elektronen, auf Grund der Wechselwirkung mit dem positiv geladenen Atomkern. Das Coulomb-Gesetz widerspricht aber der Vorstellung einer statischen Atomgröße, da im Coulomb-Feld alle erdenklichen Kreisbahnradien möglich wären. Ein auf dieser Kreisbahn kreisendes Elektron entspräche einem Elektron im Hertz'schen Dipol. Im Hertz'schen Dipol werden jedoch elektromagnetische Wellen emittiert. Dies ist in zweierlei Hinsicht bei Atomen nicht beobachtbar. So ist keine elektromagnetische Strahlung messbar (ausgenommen sind radioaktive Stoffe). Ebenfalls müsste das Elektron bei Abgabe seiner Energie auf einer spiralförmigen Bahn in den Atomkern stürzen. Die maximale Lebensdauer eines Atoms wären in dem Falle 10-8 Sekunden. Dies ist unvereinbar mit der Erkenntnis, dass Atome stabil sind. Ein drittes Problem besteht in der Erklärung von Emission und Absorption von Energiequanten. So kann mit dem Modell von Rutherford keine Erklärung für Spektralanalysen diverser Gase gemacht werden. Quelle:  Rutherfordsches Atommodell
  4. Um ein Objekt zu sehen, brauchen wir Licht. Die Lichtenergie beschleunigt aber das Objekt. (Photon - Elektron). Vergleich mit Radarfalle: Blitzen mit 800 Kg Geschossen... (Position wäre klar, aber die Geschwindigkeit....)
    • Welle-Teilchen-Dualismus (vgl. Aristoteles - Henry Maske)
    • Heisenbergsche Unschärferelation (Einsatz des Luftballon-Modells)
  5. Vergleich mit Torwart in Fußballspiel (16m-Raum) Vergleich mit Erdatmosphäre
  6. Berechnung: (0,7577 * 34,969u) + (0,2423 * 36,996u) = 35,453u

Radioaktivität

Bearbeiten

Informationen zur Radioaktivität

Bearbeiten

Nach  Radioaktivität

Unter Radioaktivität oder radioaktivem Zerfall versteht man die spontane Umwandlung instabiler Atomkerne unter Energieabgabe. Die freiwerdende Energie wird in Form energiereicher Teilchen oder Strahlung abgegeben, die entweder als Alphateilchen, Betateilchen oder Gammastrahlung bzw. Röntgenstrahlen bezeichnet werden.

Radioaktive Stoffe sind sehr schwere Elemente, welche eine hohe Anzahl an Protonen und somit in ihrem Atomkern eine hohe Spannung haben, da alle Protonen sich gegenseitig mit ihren positiven Ladungen abstoßen. Man spricht auch vom radioaktiven Zerfall der Atomkerne.

Bei einem solchen Zerfall kann sich die Protonenzahl des Atoms ändern (d. h. es findet eine Umwandlung in ein anderes chemisches Element statt). Es kann sich aber auch nur die Massenzahl ändern (d. h. Umwandlung in ein anderes Isotop desselben Elements). Die Stärke der Radioaktivität wird durch den physikalischen Begriff der „Aktivität” beschrieben und in der Einheit Becquerel angegeben.

Die Halbwertszeit ist der Zeitraum, nach dem durchschnittlich die Hälfte der instabilen Atomkerne einer Menge zerfallen sind. Sie kann nur Sekundenbruchteile, aber auch einige Milliarden Jahre betragen. Derartige Nuklide sind beispielsweise Uran-238 und Uran-235, Thorium oder Kalium-40. Je kürzer die Halbwertszeit, desto größer die Radioaktivität. Mathematisch wird der Zerfall durch das Zerfallsgesetz beschrieben.

Die Entdeckung der Radioaktivität

Bearbeiten

Der französische Physiker Antoine Henri Becquerel stellte 1896 fest, dass das Element Uran lichtempfindlichen Film schwärzen kann, selbst wenn er nicht vom Uran berührt wird.

Die polnische Chemikerin Marie Curie und ihr Ehemann Pierre Curie waren 1898 auf der Suche nach einem neuen Element, welches sie aus der Pechblende zu isolieren versuchten. Marie entdeckte bei ihren Forschungen neben dem Radium dann auch das Polonium, welches sie nach ihrer Heimat nannte. Sie bewies also, dass Radioaktivität eine Elementeigenschaft ist und bei verschiedenen Elementen auftritt. Gerhard Carl Schmidt aus Erlangen machte zur gleichen Zeit ähnliche Entdeckungen.

1899 war ein wichtiges Jahr. Die Briten Ernest Rutherford und Frederick Soddy entdeckten das radioaktive Gas Radon, der Franzose André Louis Debierne fand das strahlende Actinium.

Schon bald wusste man, dass die Radioaktivität eine sehr große Energiequelle ist. Die Curies berechneten die beim radioaktiven Zerfall von Radium frei werdende Wärmeenergie auf etwa 420 Joule/ (Gramm Radium · Stunde). Bemerkenswert fanden sie daran, dass diese Energie in Wärme umgewandelt werden kann und diese über Jahre unvermindert anhält. (Zum Vergleich: 1 g Kohlenstoff setzt 33 600 Joule frei).

Was die Curies nicht ahnten, war allerdings die stark schädigende Wirkung der Radioaktivität. Da sie beide viele Jahre schutzlos mit radioaktiven Stoffen arbeiteten, waren sie hochgradig verstrahlt und starben beide an den Folgen der Strahlenkrankheit.

Schreibweise der Reaktionsschemata

Bearbeiten

Beim radioaktiven Zerfall ist nur der Atomkern beteiligt, nicht aber die Elektronenhülle. In den Reaktionsschemata werden daher auch nur die Atomkerne berücksichtigt.

Ein Atomkern ist durch die Kernladungszahl (Ordnungszahl) Z und die Massenzahl (Nukleonenzahl) A gekennzeichnet

Nukleonenzahl (A) = Protonenzahl (Z) plus Neutronenzahl (N): A = Z + N

Ein Atomkern X wird daher wie folgt gekennzeichnet:

, z. B. ; die Kernladungszahl kann fortgelassen werden, da sie durch das Elementsymbol gegeben ist: .
Neutronen werden mit 1n oder n bezeichnet, Elektronen mit e-, einzelne Protonen mit p+ (sofern sie nicht als H+ bezeichnet werden).

Strahlungsarten

Bearbeiten

Schon Rutherford bestätigte, dass es mehrere Strahlungsarten geben muss:

  • positiv geladene Alphateilchen, die Papier nicht durchdringen können
  • negativ geladene Betateilchen, welche kleiner sind und die Haut von Menschen durchdringen
  • ungeladene Gammastrahlung

Aufgaben zum Verständnis:

Bearbeiten
  1. Was versteht man unter Radioaktivität? Erkläre und nenne Beispiele!
  2. Welche Arten von Strahlung gibt es? Welche Gefahren gehen davon aus?
  3. Wie erklärst Du Dir den radioaktiven Zerfall?

Was ist Radioaktivität?

Bearbeiten

Wiederhole zuerst die Begriffe Ordnungszahl, Kernladungszahl und Massenzahl sowie das Modell zur Anziehung von geladenen Teilchen![1]

Versuch von Henri Becquerel (1896)

Bearbeiten
Versuchsaufbau des Strahlungsnachweises von Uran beim Durchdringen einer Metallplatte
Versuchsaufbau des Strahlungsnachweises von Uran beim Durchdringen einer Metallplatte

Einige Elemente geben eine unsichtbare Strahlung ab, welche Metalle (Hinweis Rutherford: sehr dünne Folien schon) nicht durchdringt, aber Fotoplatten schwärzt. Sie wird als Radioaktivität bezeichnet (griech.: „radius“ = Strahl).

Versuch zur Untersuchung der Strahlungsarten

Bearbeiten

Die Strahlung von 3 Proben wird durch eine Metallplatte gebündelt und durch ein Magnetfeld geleitet. Die Ablenkung im Magnetfeld wird gemessen.

Die Proben: a) ,   b) ,   c)

Versuchsaufbau des Strahlungsnachweises verschiedener radioaktiver Proben beim Durchdringen einer Metallplatte und eines Magnetfeldes
Versuchsaufbau des Strahlungsnachweises verschiedener radioaktiver Proben beim Durchdringen einer Metallplatte und eines Magnetfeldes
Erklärung:
Richtung der magnetischen Feldlinien: in die Bildebene hinein.
  • α-Strahlen [a)] werden nach oben abgelenkt ( Rechte-Hand-Regel).
  • β-Strahlen [b)] werden nach unten abgelenkt.
  • γ-Strahlen [c)] werden nicht abgelenkt.
  • α-Strahlen bestehen aus positiv geladenen Heliumkernen: (v = 10000-30000 km/s),
Beispiel für Alpha-Zerfall:
(Heliumkern)
  • β-Strahlen bestehen aus Elektronen: (v = 130 000 km/s),
Beispiel für Beta-Zerfall:
  • γ-Strahlen sind energiereiche, hochfrequente elektromagnetische Wellen, die den Röntgenstrahlen sehr ähnlich sind
Gammastrahlen werden meistens beim Alpha- oder Betazerfall zusätzlich emittiert.
Beispiel:
Atome sind also doch teilbar (gr. Atomos = das Unteilbare), allerdings findet dies nur in der Kernphysik Anwendung. In der Chemie nicht!
Radioaktive Atome sind in ihrem Grundaufbau instabil. Sie zerfallen in stabile Nukleonen und senden dabei energiereiche Strahlen aus. Unterschieden wird dabei nach den Zerfallsprodukten (und der Halbwertszeit).

Zerfallsarten

Bearbeiten

α-Zerfall (Abstrahlung von He - Kernen)

Bearbeiten

Abnahme von 2 Protonen und 2 Neutronen des strahlenden Nuklids

(Halbwertszeit 1,4·1017 s)
(Halbwertszeit 1,2·107 s)

Allgemein:

β-Zerfall (Abstrahlung von Elektronen)

Bearbeiten

Bei Nukliden mit zu hohem Neutronen / Protonen - Verhältnis bewirkt die β-Emission eine Abnahme der Neutronenzahl um 1 und eine Zunahme der Protonenzahl um 1 (Umwandlung eines Neutrons in ein Proton und ein Elektron). Das Elektron stammt also nicht aus der Elektronenhülle, sondern aus dem Atomkern durch die Umwandlung eines Neutrons.

(Halbwertszeit 2,1·106 s)
(Halbwertszeit 1,8·1011 s) (Zerfallsreaktion zur C-14 - Altersbestimmung)

Allgemein:

γ-Strahlen

Bearbeiten

Die Emission von Gammastrahlen allein ist nicht mit einer Änderung der Zusammensetzung des Atomkerns verbunden. Außer beim Alpha- und Betazerfall werden Gammastrahlen auch beim Übergang eines Atomkerns von einem energetisch angeregten Zustand in einen energetisch niedrigeren emittiert.

Beispiel:

Neutronenstrahlen

Bearbeiten

sind energiereiche Neutronen

C14 - Methode zur Altersbestimmung

Bearbeiten

Die Halbwertszeit ist der Zeitraum, in dem die Hälfte aller ursprünglich vorhandenen Atome zerfallen ist. Sie ist für jedes Isotop verschieden und von äußeren Bedingungen unabhängig.

Durch natürliche Radioaktivität existiert das Kohlenstoffisotop 14C. Es wird von allen Lebewesen mit der Nahrung aufgenommen, solange diese leben. Nach dem Tode kann man durch den „Restgehalt“ an 14C bestimmen, wann das Lebewesen lebte.

Halbwertszeit 14C = 5730 Jahre

Von 100% 14C sind nach 5730 Jahren nur noch 50% vorhanden.
Von 100% 14C sind nach 11460 Jahren nur noch 25% vorhanden...

Massendefekt

Bearbeiten

Die Summe der Massen aller Elementarteilchen eines Atoms ist verschieden von der effektiven Atommasse. Die Differenz wird als Massendefekt bezeichnet.

Beispiel:

Bearbeiten

Summe der Protonen-, Elektronen- und Neutronenmassen:

Bearbeiten

Atommasse:

Bearbeiten

Massendefekt:

Bearbeiten

Nach E = m · c² lässt sich aus dem Massendefekt die Bindungsenergie der Kernbausteine berechnen:

pro Chloratom oder
pro Nukleon des Chlors (1/35 von ).
Mit

ist die Kernbindungsenergie 8,5 MeV pro Nukleon des Chlor-35. Die Kernbindungsenergie in 1 g beträgt 229.000 kWh !

Die Atombombe

Bearbeiten
Wikipedia hat einen Artikel zum Thema:


Am 6. August 1945 wurde die japanische Stadt Hiroshima zerstört. Drei Tage später die Stadt Nagasaki, welches die damalige japanische Regierung zum Aufgeben und letztlich zum Ende des 2. Weltkriegs führte. Einer solchen Sprengkraft hatte kein Land der Welt etwas entgegenzusetzen.

Atombomben zählen zusammen mit Wasserstoff- und Neutronenbomben zu den Kernwaffen. Durch Atomspaltungen werden gewaltige Energiemengen frei, welche ein unvorstellbares Zerstörungspotential haben.

Bereits die ersten Kernwaffen mit nur 1%-iger Effizienz erreichten Explosionsenergien, die mehr als zehntausend Tonnen konventionellen Sprengstoffs entsprachen. Damit setzten sie genug Energie frei, um die japanischen Städte Hiroshima und Nagasaki fast vollständig zu zerstören und Hunderttausende von Menschen zu töten. Während des Kalten Krieges entwickelten vor allem die USA und die Sowjetunion Kernwaffen mit teilweise mehr als zehn Millionen Tonnen TNT-Äquivalent.

Die stärkste jemals explodierte Bombe war die sowjetische Zar-Bombe. Sie wurde am 30. Oktober 1961 bei einem atmosphärischen Kernwaffentest gezündet und setzte eine Energie von etwa 57.000 Kilotonnen (= 57 Megatonnen) TNT-Äquivalent frei. Zum Vergleich: die Hiroshima-Bombe hatte eine Sprengkraft von 13 Kilotonnen TNT. Eine Bombe mit derartiger Kraft hätte im Kriegseinsatz ganze Ballungsgebiete verwüstet. Die Temperatur, die bei einer nuklearen Explosion erzeugt wird, beträgt zwischen 200.000.000 °C und 300.000.000 °C.

Durch ihre große Zerstörungskraft, aber mehr noch durch die bei der Explosion freigesetzten radioaktiven Rückstände stellen Kernwaffen eine ernste existenzielle Bedrohung für die Menschheit und das Leben auf der Erde dar.

Die Entwicklung der ersten Kernwaffen

Bearbeiten

Allgemein bekannt für ihre Arbeit bei der Entwicklung von Kernwaffen sind Robert Oppenheimer und Edward Teller. Der erste Wissenschaftler, der ernsthaft über den tatsächlichen Bau einer Kernwaffe nachdachte, war jedoch der Physiker Leó Szilárd.

Bereits im September 1933 dachte er an die Möglichkeit, mittels Beschuss durch Neutronen Atomkerne zu einer Kettenreaktion anzuregen. Diese Idee war zu jener Zeit noch sehr umstritten, später auf diesem Gebiet sehr erfolgreiche Forscher wie Ernest Rutherford, Enrico Fermi und Otto Hahn glaubten damals noch nicht daran, dass Atomkerne sich überhaupt spalten lassen.

Nach einigen Jahren der Grundlagenforschung (u. a. von Otto Hahn, Fritz Straßmann, Frédéric Joliot-Curie, Enrico Fermi) war es im Frühsommer 1939 soweit, dass die notwendigen theoretischen Grundlagen veröffentlicht waren, um bei ausreichender Verfügbarkeit von spaltbarem Uran eine Kernwaffe zu bauen.

Schon vor dem Beginn des Zweiten Weltkrieges am 1. September 1939 richteten die drei in den Vereinigten Staaten lebenden Physiker und Leó Szilárd, Albert Einstein und Eugene Paul Wigner im August 1939 einen Brief an den damaligen US-Präsidenten Franklin D. Roosevelt, um ihn vor der Möglichkeit der Entwicklung einer Atombombe in Deutschland zu warnen und ihn im Gegenzug zu der Entwicklung einer eigenen Atombombe anzuregen.

Als die amerikanische Regierung davon überzeugt wurde, dass die Entwicklung einer Atombombe grundsätzlich möglich ist, und dass auch der Kriegsgegner Deutschland diese Möglichkeit besitzt, wurden die Forschungen intensiviert und führten schließlich zum amerikanischen Manhattan-Projekt, welches von Dr. J. Robert Oppenheimer geleitet wurde.

In Deutschland arbeiteten während des Zweiten Weltkrieges Wissenschaftler wie u. a. Werner Heisenberg, Carl Friedrich von Weizsäcker, Walther Gerlach, Kurt Diebner und Otto Hahn an der Entwicklung einer Atombombe.


  1. Was passiert, wenn Du Plastikfolie und Papier aneinander reibst? (Papier und Folie ziehen sich an, da sie gegensätzliche Ladungen haben. Folie und Folie hingegen stoßen sich ab ( gleichsinnige Ladungen)

Hauptgruppen des PSE

Bearbeiten

Übersicht

Bearbeiten

Das Periodensystem teilt sich in Perioden und Hauptgruppen auf. Elemente mit ähnlichen Eigenschaften stehen dabei oft übereinander. In diesem Kapitel wirst Du die Elemente der 1., 2., 7. und 8. Hauptgruppe etwas näher kennen lernen.

H He
Li Be B C N O F Ne
Na Mg Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga G e As S e Br Kr
Rb Sr Y Zr Nb Mb Tc Ru Rh Pd Ag Cd In Sn S b Te I Xe
Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi P o A t Rn
Legende
Alkalimetalle Erdalkalimetalle Nebengruppenelemente Metalle Halbmetalle Nichtmetalle Halogene Edelgase
radioaktives Element

Wenn man mit der Maus über das Elementsymbol fährt, erscheint der Name des Elements. Klickt man auf den blauen Link so kommt man zu dem zugehörigen Wikipedia-Artikel.

Ein vollständiges Periodensystem zum Ausdrucken auf ein DIN A4 Papier findet man unter Tabellensammlung Chemie/ Periodensystem.

Eigenschaften der Alkalimetalle

Bearbeiten

Die chemischen Elemente der 1. Hauptgruppe des Periodensystems (Lithium, Natrium, Kalium, Rubidium, Cäsium, Francium) werden auch als Alkalimetalle bezeichnet. Sie sind alle sehr reaktiv und besitzen alle ein einzelnes Valenzelektron. Der Name kommt vom Arabischen „Al-quali“, welches „aus Pflanzenasche“ bedeutet. Vermutlich haben sie ihren Namen durch das Element „Kalium“, welches ein Bestandteil der Pottasche ist.

Versuch Beobachtung Schlussfolgerung
1) Schneiden von Na Metallische Schnittfläche
Anlaufen
Dichte < H2O
Metall, welches an der Luft sofort oxidiert
2) Lithium wird auf Wasser gelegt, am Ende wird Indikator zugefügt

Lithium schwimmt
der Indikator zeigt eine Lauge
Gasentwicklung, heftige Reaktion

Dichte < H2O
es ist eine Lauge
Li + H2O LiOH + H2 +E

3a) Natrium wird auf Wasser gelegt|

siehe oben
+ Abkugeln des Metalls

Dichte < H2O
Metall schmilzt
Na + H2O NaOH + H2 +E

3b) Unter das Natrium wird etwas Filterpapier gelegt Na kann sich nicht mehr bewegen, rote Flamme, explosionsartige Umsetzung Entzündungstemperatur von H2 wird überschritten, da Hitze nicht rechtzeitig verteilt werden kann

Na + H2O NaOH + H2 +E

Zu 3b: Man kann beweisen, dass H2 tatsächlich entsteht, indem man das Gas auffängt und eine Knallgasprobe durchführt. Dieser Nachweis ist positiv.

Die Alkalimetalle findet man in der 1. HG des Periodensystems. Ausnahme: Wasserstoff ist kein Alkalimetall! Die Alkalimetalle reagieren heftig mit Wasser unter Bildung von Wasserstoff und der entsprechenden Lauge. Sie sind weich und können mit einem Messer geschnitten werden. Sie sind sehr unbeständig und reagieren mit vielen Stoffen äußerst heftig. Deswegen werden sie unter Schutzflüssigkeiten wie Paraffin oder Petroleum aufbewahrt.

Zusatzinformationen

Bearbeiten

 Alkalimetalle ( Lithium,  Natrium,  Kalium) lassen sich auch verbrennen:
Verbrennung von Li: Li + O2 2 Li2O +E

Wenn man dann die Rückstände im Reagenzglas mit Wasser reagieren lässt, entsteht wieder eine Lauge:

2 Li2O + H2O 2 LiOH +E

Gemeinsame Eigenschaften der 1. Hauptgruppe

Bearbeiten
  1. Alle Alkalimetalle haben ein Valenzelektron. Zum Erreichen der Edelgaskonfiguration reicht es, ein Elektron abzugeben. Dazu ist nur wenig „Ionisierungsenergie“ notwendig. (Die Energie, die zur Abspaltung eines Elektron benötigt wird, nennt man Ionisierungsenergie.)
  2. Die Dichte nimmt vom Li zum Fr zu
  3. Die Schmelztemperatur nimmt mit steigender Masse vom Li zum Fr ab
  4. Abnahme der Elektronegativität und Abnahme der Elektronenaffinität
  5. Die Atomradien nehmen vom Li zum Fr zu
  6. Die Reaktivität der Metalle der 1. HG nimmt vom Li zum Fr zu. Rb und Cs explodieren sofort bei Wasserkontakt, Cs schon bei Kontakt mit Luft.

Warum nimmt Reaktivität zu?

Bearbeiten

Die Atomkerne werden zwar vom Li zum Fr immer größer, aber die Elektronenhülle wird um ein Vielfaches größer, da sie von Periode zu Periode mehr Elektronen „beherbergen“ muss. In der Konsequenz nimmt der Abstand vom positiven Kern zum negativen Valenzelektron zu und es wird immer leichter ein Elektron abzuspalten und Edelgaskonfiguration zu erreichen. Da also immer weniger Ionisierungsenergie benötigt wird, nimmt sie vom Li zum Fr ab. Entsprechend nimmt die Reaktivität zu.

Des weiteren zeigen Alkalimetalle und ihre Salze für jedes Element eine typische Flammenfärbung:

  • Lithium(-salz) färbt Flammen rot,
  • Natrium(-salz) färbt Flammen gelborange,
  • Kalium(-salz) färbt Flammen violett,
  • Rubidium(-salz) färbt Flammen rot
  • und Caesium(-salz) färbt Flammen blauviolett.

Aufgrund dieser Flammenfärbung werden Alkalimetallverbindungen für Feuerwerke benutzt.

Die Erdalkalimetalle

Bearbeiten

Die Erdalkalimetalle sind die Elemente der 2. Hauptgruppe des Periodensystems:

Beryllium, Magnesium, Calcium, Strontium, Barium, Radium

In der Natur kommen sie vor allem in Salzen vor. Kalk (z. B. in Knochen) und Gips enthalten Calcium. Magnesium findet man auch im Blattgrün von Pflanzen und in den Muskeln von Säugetieren. Erdalkalimetalle kommen in der Natur nur gebunden vor, da sie sehr reaktionsfreudig sind.

1. Reaktionen mit Wasser

Bearbeiten

Versuchsbeschreibung
Calcium und Magnesium werden mit Wasser vermischt

Beobachtung

  1. Calcium
    • Calcium beginnt nach wenigen Sekunden heftig mit Wasser zu reagieren
    • die Heftigkeit der Reaktion nimmt zu
    • Reaktionshitze
    • Gasentwicklung
    • weißes Produkt
  2. Magnesium
    • Magnesium reagiert nur mit heißem Wasser und wenn es von der Oxidschicht befreit wird.
    • kleine Gasblasen

Beide Lösungen bilden eine Lauge

Schlussfolgerung

a) Ca + 2 H2O Ca(OH)2 + H2 + E

b) Mg + 2 H2O Mg(OH)2 + H2 + E

2. Reaktion mit Sauerstoff:

Bearbeiten

Versuchsbeschreibung
Magnesium wird verbrannt

Beobachtung
weiße helle Flamme

Schlussfolgerung
2 Mg + O2 2 MgO +E

3. Flammenfärbung:

Bearbeiten
Ion Ca Sr Ba
Farbe      

Gemeinsame Eigenschaften der 2. Hauptgruppe

Bearbeiten
  • Die Härte der Erdalkalimetalle nimmt vom Beryllium zum Radium ab.
  • Die Reaktionsfähigkeit der Erdalkalimetalle mit Wasser nimmt innerhalb der Hauptgruppe zum Barium hin zu.
  • Auch Erdalkalimetalle und deren Salze färben die Brennerflamme:

Calcium färbt die Brennerflamme ziegelrot, Strontium karminrot Barium grün. Beryllium, Magnesium und Radium weisen keine Flammenfärbung auf.

Aufgaben:

Bearbeiten
  1. Warum verzögert sich der Reaktionsbeginn?
  2. Wie heißt der Reaktionstyp? Welches sind seine Kennzeichen?
  3. Warum bilden alle Erdalkalimetalle zweifach positive Ionen?
  4. In welcher Form treten Calciumverbindungen in der Natur auf?

Zusatzinformationen:

Bearbeiten

 Erdalkalimetalle ( Magnesium,  Calcium,  Barium,  Strontium)

Die Halogene

Bearbeiten

Als Halogene (griech. „Salzbildner“) werden die Elemente der 7. Hauptgruppe des Periodensystems bezeichnet. Zu den Halogenen gehören die Elemente Fluor, Chlor, Brom, Jod, Astat. Allen Elementen ist gemeinsam, dass sie sieben Valenzelektronen haben und dass sie sehr reaktiv sind. In der Natur kommen sie vor allem in Form von Salzen vor.

Besonderheiten:

Bearbeiten
  • Als Element liegen alle als zweiatomige Moleküle vor (F2, Cl2, Br2, I2…)
  • Alle Halogene sind sehr reaktionsfreudig
  • Die Reaktivität nimmt von Fluor zu Iod ab
  • Halogene reagieren gut mit Wasserstoff und bilden dabei Halogenwasserstoffe, die in Wasser gelöst zu Säuren werden
  • Halogene reagieren auch gut mit Metallen

Fluor [F2]

Bearbeiten

Das gelb-grüne Gas Fluor ist das reaktivste chemische Element überhaupt. Es reagiert mit fast allen Verbindungen, selbst mit Edelgasen sind u.U. Reaktionen möglich! Aus diesem Grunde ist es für alle Lebewesen sehr giftig[1] . In der Natur tritt es nur in Form von Fluoriden z. B. in Salzen auf.

Sein Name leitet sich über lat. fluor, »das Fließen«, von Flussspat ab, dem wichtigsten Mineral, das Fluor enthält.

Eigenschaften & Besonderheiten

Bearbeiten
  • bei Raumtemperatur das stärkste beständige Oxidationsmittel.
  • Es ist das elektronegativste Element
  • Mit fast allen anderen Elementen bildet Fluor spontan Verbindungen. Selbst mit den Edelgasen Xenon und Radon und Krypton reagiert Fluor.
  • Besonders heftige, explosionsartig verlaufende Reaktionen beobachtet man mit wasserstoffhaltigen, gasförmigen und flüssigen Verbindungen wie beispielsweise Wasser (H2O) und Ammoniak (NH3). So wird Wasser durch Fluor in Sauerstoff (O2) und Fluorwasserstoff (HF) gespalten. Treibende Kraft hinter all diesen Reaktionen ist jeweils die äußerst exotherm verlaufende Bildung von Fluorwasserstoff.
  • Aufgrund der sehr schwachen F-F-Bindung (die Bindungsenergie beträgt nur 38 kcal/mol), lässt sich Fluor thermisch leicht spalten. Schon bei 400 °C liegt Fluor in erheblichem Maße in atomarer Form vor.

Verwendung

Bearbeiten

In Zahnpasta, bei der Alu-Herstellung, Kühlmittel, Insektizide, Herbizide, Fungizide, als Kampfstoff in chemischen Waffen, 5-Fluoruracil (Medikament, welches Krebszellen abtötet), Schmiermittel für Festplatten in Computern, High-Energy-Treibstoff für Raketenmotoren, Bestandteil von PTFE (Polytetrafluorethylen, Handelsname: Teflon)

Chlor [Cl2] (Chloros = Grün)

Bearbeiten

Menschen verwenden das bei Raumtemperatur gasförmige Chlor z. B. im Schwimmbad, im Trinkwasser oder in Reinigungsmitteln. Wenn man lange schwimmt, braucht man im Schwimmbad eine Chlorbrille. Wozu eigentlich?

Die Aufgabe des Chlors ist die Desinfektion (=Abtöten von Keimen). Chlor ist demzufolge ein sehr reaktionsfreudiges Element.

Worauf beruht diese Wirkung?

Bearbeiten
  • Reaktion mit Wasser zu Salzsäure:
    • Cl2 + H2O HCl + HOCl + E
    • 2Cl2 + 2H2O 4HCl + O2 + E
  • bleichende Wirkung
  • riecht stechend
  • Reagiert mit fast allen Metallen und Nichtmetallen  eines der reaktionsfähigsten Elemente
  • Chlor entreißt vielen Verbindungen den Wasserstoff
  • In der Natur kommen 2 stabile Isotope von Chlor vor: , (ca. 75%) und .

Chlor eignet sich besonders gut als Oxidationsmittel

Vorkommen des Chlors

Bearbeiten

Chlor existiert in der Natur, da es ein sehr reaktionsfreudiges Element ist, nicht in elementarer Form, sondern kommt nur als Halogenid (z. B. in Salzen) vor.

Im Menschen kennt man folgende Chlorverbindungen: NaCl, KCl, MgCl2, HCl im Magen

Weitere Verwendung:

Bearbeiten
  • Bleichmittel (beispielsweise früher in der Papierindustrie).
  • Ausgangsstoff für zahlreiche Chemikalien (z. B. PVC, Salzsäure)
  • Chlor wird als preiswertes Desinfektionsmittel für das Trinkwasser eingesetzt.
  • Chlorgas wurde im ersten Weltkrieg in Belgien als Kampfgas eingesetzt, mit vielen Toten und zahlreichen, teilweise lebenslang, geschädigten Soldaten.
  • Biologisch besitzt Chlor in Form von Chlorid als Bestandteil von Salzen eine große Bedeutung. Aufgenommen wird es vor allem über die Nahrung (z. B. in Form von Kochsalz (Natriumchlorid) - täglich zwischen 3 -12 g Chlorid). Die Ausscheidung erfolgt über Niere und Schweiß.
  • Chlorid ist notwendig zur Produktion von Magensäure und zur Aufrechterhaltung der Osmose im Organismus.

Zusatzinformationen:

Bearbeiten

 Halogenide ( Fluor,  Chlor,  Brom,  Iod)

Brom [Br2]

Bearbeiten

Brom ist das einzige bei Raumtemperatur und Normaldruck flüssige Nichtmetallelement. Es ähnelt in vielen seiner Eigenschaften dem Chlor, nur ist es weniger reaktiv. Auf Grund seines stechenden Geruchs schlug Joseph Louis Gay-Lussac den Namen Brom (von altgriechisch brómos = Gestank) vor. Es ist äußerst giftig, seine Dämpfe sollten nicht eingeatmet werden, die Flüssigkeit sollte nicht die Haut berühren.

  • Brom kommt ebenso wie auch Chlor und Fluor in der Natur nur in Verbindungen vor. (v. a. als Natriumbromid im Meerwasser).
  • Die rotbraune Flüssigkeit bildet schon bei Raumtemperatur stark stechend riechende, schwere Dämpfe, die noch giftiger sind als Chlor.
  • Festes (gefrorenes) Brom ist dunkelbraun
  • In Wasser löst es sich eher schlecht und reagiert dann noch durch Licht unter Sauerstoffentwicklung zu Bromid.
  • Brom reagiert mit Wasserstoff zu Bromwasserstoff
  • Mit vielen Metallen (z. B. Aluminium) reagiert es sehr exotherm unter Bildung des jeweiligen Bromides.
  • Feuchtigkeit erhöht die Reaktivität des Broms stark.
  • Brom stellt ein mittelstarkes Oxidationsmittel dar.
  • Ist weniger reaktiv als Chlor, kann deshalb von Chlor aus seinen Verbindungen verdrängt werden.
  • Neben Hg das einzige bei Raumtemperatur flüssige Element

Verwendung der Bromverbindungen

Bearbeiten
  • Flammschutzmittel für (Elektronik-)Platinen
  • Schädlingsbekämpfung
  • Anti-Wurmmittel
  • Desinfektionsmittel (ist milder als Chlor)
  • Silberbromid als Bestandteil des lichtempfindlichen Films bei analogen Kameras
  • Farbstoffe
  • Bromhaltiger Kautschuk zur Herstellung „luftdichter“ Reifen
  • Tränengas

Iod [I2] [veilchenfarben]

Bearbeiten
  • Iod ist ein leicht grau metallisch glänzender Feststoff, der schon bei geringer Erwärmung violette Ioddämpfe bildet.
  • I2 kommt nur als Iodid vor (und das auch nur in geringen Mengen)
  • Iod sublimiert, d. h. wenn es schnell erhitzt wird, so geht es vom festen Zustand direkt in den gasförmigen über. Der Grund hierfür ist, dass der Schmelzpunkt (114 °C) und der Siedepunkt (184 °C) dicht beieinander liegen und es sogar unterhalb der Schmelztemperatur schon verdunstet!.
  • Es wirkt desinfizierend
  • Iod ist wenig reaktiv. Es reagiert mit einigen Metallen:
    • Zn + I2 ZnI2 + E
    • Mg + I2 MgI2 + E
  • zu finden im Seetang, so dass schon vor 2000 Jahren Schilddrüsenkranken und an Kropf Erkrankten Seetang als Medizin gegeben wurde.
  • Verwendung von Silberiodiden und Silberbromid für analoge Filme
  • Farbstoffe
  • für Menschen ist Iodid ein lebensnotwendiges Spurenelement deshalb essen wir Iodsalz!
  • es kann Polyhalogenidverbindungen bilden. Dabei verbinden sich in Wasser gelöste I2-Moleküle mit einem Iodid-Anion zum einfach negativ geladenen I3--Ion.
  • wenn sich das I3--Ion in Stärke (-Helices) einlagert, färbt es sich intensiv Blau - fast schwarz. (=Iod-Stärke-Nachweis).

Gemeinsame Eigenschaften der Elemente der 7. Hauptgruppe

Bearbeiten
  • Alle Halogene sind Nichtmetalle bis auf das Halbmetall Astat
  • Ihr Name leitet sich vom griechischen Halos (=Salz) ab und bedeutet „Salzbildner“
  • Halogene kommen vor allem in Verbindungen mit Natrium in Form von Salzen vor. (z. B.: NaF, NaCl, NaBr, NaI)
  • große Ähnlichkeiten innerhalb der Gruppe
  • allen fehlt ein Elektron zur Edelgaskonfiguration
  • Die Elektronegativität sinkt mit zunehmender Elektronenzahl: Cl2 > Br2 > I2 > At2
  • Reaktivität bei Verbindung mit Metallen nimmt von F2 zum I2 ab.
  • Mit Silbernitrat können Chlorid, Bromid und Iodid nachgewiesen werden. Es entsteht immer ein flockiger Niederschlag von einem Silberhalogenid. AgCl ist weiß, AgBr ist leicht weiß-gelblich und AgI ist satt gelb.
  • sie reagieren gut mit Wasserstoff und bilden dabei Halogenwasserstoffe, die in Wasser gelöst zu Säuren werden (HF, HCl, HBr, HI)
  • Sie bilden je Element (hier X für das jeweilige Element) vier Arten von Sauerstoffsäuren:
allg. Formel z.B. die Chlor-Sauerstoffsäuren
HXO Hypohalogenige Säure HClO Hypochlorige Säure
HXO2 Halogenige Säure HClO2 Chlorige Säure
HXO3 Halogensäure HClO3 Chlorsäure
HXO4 Perhalogensäure HClO4 Perchlorsäure

Edelgase

Bearbeiten

Die Elemente der 8. Hauptgruppe (Helium, Neon, Argon, Krypton, Xenon und Radon) werden als Edelgase bezeichnet. Sie sind farb- und geruchlose Gase, die (fast) nicht reagieren. Der Grund hierfür ist, dass sie voll besetzte Elektronenwolken besitzen.

Die Edelgase werden durch fraktionierte Destillation aus Luft dargestellt. Helium kann außerdem aus Erdgas gewonnen werden, in dem es zu ca. 8% vorkommen kann[2]. Bei der Abkühlung auf –205 °C bleibt nur Helium gasförmig zurück.

Verwendung

Bearbeiten
  • Edelgase werden für Leuchtreklamen verwendet, da sie in Gasentladungsröhren charakteristische Farben ausstrahlen:
Helium: weiß
Neon: rot
Argon: violett
Krypton: gelbgrün
Xenon: violett
Radon: weiß
  • Beim Tauchen wird als Atemgas Helium und Sauerstoff gemischt, da sich bei hohen Drücken weniger Helium im Blut löst als Stickstoff und somit die Gefahr der Taucherkrankheit vermindert wird.
  • Argon wird als Inertgas beim Schutzgas-Schweißen verwendet.
  • die Reaktionsträgheit der Edelgase wird in Glühbirnen eingesetzt, um eine Reaktion des Wolframdrahtes mit z. B. Luftsauerstoff zu verhindern. Im Vergleich zum Vakuum hat ein durch Edelgas geschütztes System den Vorteil, dass der Wolframdraht auch bei großer Hitze nicht gut verdampfen kann.
  • ähnliche Verwendung findet Helium als Schutzgas beim Schweißen
  • Helium wird außerdem bei der Befüllung von Ballons verwendet
  • Flüssiges Helium ist ein sehr gutes Kühlmittel, da es den tiefsten Siedepunkt aller Substanzen hat. (-268,93°C)[3]
  • Unter ganz bestimmten Bedingungen können sich Edelgase mit dem sehr reaktiven Fluor vereinigen. Es gibt aber nur wenige Beispiele für diese exotischen Verbindungen: XeF6, XeF4, XeF2, KrF2
  • nach dem Einatmen von Helium ändert sich die eigene Stimme zu einem hohen Piepsen

Zusatzinfos:

Bearbeiten

 Helium,  Neon,  Argon,  Krypton,  Xenon,  Radon

nach  Helium

Helium (hélios = Sonne) ist das leichteste aller Edelgase. Das farblose, geruchs- und geschmackslose sowie ungiftige Gas ist reaktionsträge, geht also nur wenige bekannte chemische Reaktionen ein. Anwendung findet Helium zum Beispiel in flüssiger Form als Kühlmittel, in gasförmigem Zustand vermag es als Traggas für Ballons und Luftschiffe zu dienen.

Helium ist nach Wasserstoff das chemische Element mit der geringsten Dichte, d.h. es lässt sich gut als Auftriebsgas für Balons benutzen. Außerdem besitzt es die niedrigsten Schmelz- und Siedepunkte aller Elemente. Daher existiert es nur unter sehr starkem Druck oder in großer Kälte als Flüssigkeit oder Feststoff.

Helium ist ein Edelgas, das heißt, dass dieses Gas aufgrund seiner voll besetzten äußersten Elektronenschale chemisch sehr reaktionsträge ist. Es ist jedoch möglich, unter extremen Bedingungen eine chemische Verbindung von Helium mit einem Proton (HeH)+ zu erzeugen. Diese Verbindung ist bei Normalbedingungen sehr instabil und kann nicht in Form eines Salzes wie HeH+X- isoliert werden.

Helium kann nur unter großem Druck und bei sehr niedrigen Temperaturen zu einem durchsichtigen Feststoff verfestigt werden. Festes Helium benötigt eine Temperatur von 1 bis 1,5 K und ungefähr 26 bar an Druck. Festes Helium bildet kristalline Strukturen aus.

Verwendung:

Bearbeiten

Unter hohem Druck abgefülltes Helium ist frei verkäuflich und wird aus Erdgas gewonnen.

  • Helium-Sauerstoff-Gemische (80:20) dienen für Asthmatiker als Beatmungsgas - die Viskosität (=Flüssigkeitseigenschaften) des Gasgemisches ist wesentlich geringer als die von Luft und es lässt sich daher leichter atmen.
  • Beim Tauchen werden verschiedene Gemische mit Helium (z. B. aus Sauerstoff, Stickstoff und Helium) als Atemgas verwendet.
  • Da Helium nur ein Siebtel der Dichte von Luft hat, dient es auch als Traggas für Ballons oder Luftschiffe.
  • In der Schweißtechnik wird Helium in Reinform oder als Zumischung als Schutzgas eingesetzt, um die Schweißstelle vor Sauerstoff zu schützen. Durch die hohe Hitze würde Sauerstoff sonst eine Schweißnaht leicht wieder oxidieren.
  • Technisch wird verflüssigtes Helium als Kühlmittel zum Erreichen tiefer Temperaturen (-272 bis -268 °C) eingesetzt
  • Gerade beim Einsatz von supraleitenden Magneten dient Helium als Kühlmittel. Praktische Anwendungen sind hier die Kernspintomographie (MRT), die Magnetoenzephalographie (MEG) in der Medizintechnik sowie die Magnetresonanzspektroskopie (NMR) in der Forschung.
  • Helium wird in der Raketentechnik eingesetzt, um bei pumpgeförderten Flüssigtreibstoffraketen den verbrauchten Treibstoff zu ersetzen, damit die dünnwandigen Treibstofftanks der Raketen nicht implodieren, wenn der Treibstoff von den Treibstoffpumpen der Triebwerke aus den Tanks gesaugt wird.
  • Helium wird in zwei Lasertypen eingesetzt: dem Helium-Neon-Laser und dem Helium-Cadmium-Laser.

Tendenzen im PSE

Bearbeiten

Um schnell mal einen Überblick über die Elemente des PSE zu bekommen ist es gut, wenn man ein paar tendenzielle Regeln über die Zusammenhänge kennt. Dein neues Wissen über die Elementhauptgruppen kann Dir helfen, ein paar Regeln abzuleiten.

Erklärung was ist was im Periodensystem
Erklärung was ist was im Periodensystem


  • Die Protonenzahl nimmt innerhalb einer Periode zu.
  • Alle Elemente der gleichen Hauptgruppe haben die gleiche Anzahl an Außenelektronen.
  • Alle Außenelektronen der Elemente einer Periode befinden sich in der gleichen Elektronenwolke, d. h. sie haben die gleiche Energiestufe.
  • Der Atomradius nimmt innerhalb einer Periode immer ab, da die Anzahl an Protonen zunimmt und diese somit stärker an den Elektronen ziehen.
  • Innerhalb der Hauptgruppe nimmt der Atomradius zu, weil von Element zu Element eine weitere Elektronenwolke vorliegt und somit sich die Elektronen immer weiter vom Atomkern entfernen.
  • Die Elektronegativität ist bei Fluor am größten. Sie ist definiert mit dem Wert 4. Vom Fluor nimmt sie nach „links“ in Richtung zu den Metallen und nach „unten“ hin ab. Cäsium hat somit die geringste Elektronegativität.
  • Der Metallcharakter beschreibt, wie metallisch ein Metall ist, also auch die Fähigkeit der Metallatome Elektronen abzugeben. Cäsium ist das „metallischste“ Element. Der Metallcharakter nimmt also vom Cs zum Li und vom Li zum At ab. Mit anderen Worten nimmt er innerhalb von Hauptgruppen zu und im Verlauf der Perioden ab.
  • Die Anzahl an Protonen im Kern wird auch als Kernladung bezeichnet. Sie nimmt innerhalb der Periode zu.
  • Die Ionisierungsenergie ist die Energie, die man benötigt um einem Atom ein Elektron zu entreißen. Sie ist stark von der Anziehungskraft zwischen Atomkern und dem zu entfernenden Elektron abhängig. Sie kann also durch die Coulomb-Formel berechnet werden:

Also steigt die Ionisierungsenergie innerhalb einer Periode an, weil die Kernladungszahl k+ zunimmt. Innerhalb einer Hauptgruppe sinkt die Ionisierungsenergie von oben nach unten ab, weil der Abstand r zwischen Kern und Elektron immer größer wird. Beim Übergang von einer Periode zur nächsten, z. B. vom Neon zum Natrium, nimmt die Ionisierungsenergie stark ab, weil sich das zu entfernende Elektron in einer neuen, vom Atomkern entfernteren Elektronenwolke befindet.

Zusatzinformationen:

Bearbeiten

 Coulombsches Gesetz

Anordnung der Metalle und der Nichtmetalle im heutigen PSE

Bearbeiten

Das Periodensystem der Elemente

Bearbeiten
vereinfachtes PSE
vereinfachtes PSE

Das Periodensystem

Bearbeiten

Im PSE sind die Elemente nach steigender ................................ zeilen­weise angeordnet. Elemente mit ähnlichen Eigenschaften stehen dabei untereinander. Das PSE ist aufgebaut aus acht ........................................ und sieben ........................................ . Zwischen der zweiten und der dritten Hauptgruppe befinden sich die ................................ sowie die Actinoide und die Lanthanoide.

Elementargruppe im PSE
Elementargruppe im PSE

Elementgruppe

Bearbeiten

Entsprechend der Anzahl an .................................... unterscheidet man 8 Haupt­gruppen. Alle ........................... einer HG haben dabei die gleiche Anzahl an Außen­elektronen. Dabei zeigen die Elemente einer Gruppe oft abgestufte ............................. . Einige Hauptgruppen tragen besondere Namen: 1. HG:Alkali-Metalle 2. HG …………………… 6. HG: Chalkogene 7. HG …………………… 8. HG ……………………

Elementarperiode im PSE
Elementarperiode im PSE

Elementperiode:

Bearbeiten

Eine Periode ist eine Zeile im Periodensystem. Alle Elemente einer Periode haben die gleiche Anzahl an Elektronenwolken. Innerhalb der Elementperiode nimmt von Element zu Element die ............................ und die ......................... um den Faktor .... zu. Die erste Periode, enthält nur die zwei Elemente …………………… und …………………… .


Halbmetalle im PSE
Halbmetalle im PSE

Metalle:

Bearbeiten

Metalle zeichnen sich durch die Eigenschaften ..........................., ............................., ........................ und durch ............................... aus. Bei Metallen liegen positive ............................... mit frei beweglichen .................................. vor. Diese Anordnung bezeichnet man als ................................. .

Nichtmetalle im PSE
Nichtmetalle im PSE

Nichtmetalle:

Bearbeiten

Die Nichtmetalle zeigen keine metallischen ............................. Sie sind z.B. spröde und leiten nicht den elektr. Strom (eine Ausnahme dazu ist ....................) Einige liegen als mehratomige Moleküle vor (O2, N2, H2 sowie die Elemente der 7. HG: F2, Cl2, Br2, I2 sowie O3, P4, S8).


Halbmetalle im PSE
Halbmetalle im PSE

Halbmetalle:

Bearbeiten

Halbmetalle stehen zwischen den ......................... und den ....................... . Dementsprechend zeigen sie Eigenschaften, die „dazwischen“ liegen, wie z.B. mittlere Leitfähigkeit. Bei Normalbedingungen sind sie alle ................................ . Besondere Verwendung finden sie in der Halbleiterindustrie als .......................... von Widerstände, Transistoren und Computerspeicher


1.Hauptgruppe
1.Hauptgruppe

Die Alkalimetalle (1. Hauptgruppe)

Bearbeiten

Die Elemente der ersten HG (außer ...................... !) bezeichnet man als Alkali­metalle. Sie besitzen nur ein ................................ . Sie zeichnen sich durch ......................................., ......................................, .................................. und ................................. aus


2.Hauptgruppe
2.Hauptgruppe

Die Erdalkalimetalle (2. Hauptgruppe)

Bearbeiten

Alle Elemente dieser HG haben 2 .......................... Einige Erdalkali­metalle sowie die Alkalimetalle zeigen charakteristische ...........................: Ca rot, Sr karminrot und Ba grün). ..... und ..... zeigen keine Flammenfärbung. Die ............................. der Erdalkalimetalle mit Wasser nimmt innerhalb der HG zum ....................... hin zu. Es entstehen bei dieser Reaktion .............................. und Hydroxidlösungen.


7.Hauptgruppe
7.Hauptgruppe

Die Halogene (7. Hauptgruppe)

Bearbeiten

Innerhalb der Gruppe nehmen Schmelz- und Siedepunkte zu. Fluor und Chlor liegen als ........................., Brom als ........................ und Iod liegt als .......................... vor. Mit Metallen bilden sie ........................... . Deshalb werden sie auch als .............................. bezeichnet.


8.Hauptgruppe
8.Hauptgruppe

Die Edelgase (8. Hauptgruppe)

Bearbeiten

Die Elemente der 8. HG ...................... nicht mit anderen Elementen - sie sind sehr reaktionsträge. Sie sind farb- und geruchlose, nicht brennbare und kaum wasserlösliche Gase. Sie kommen nur .................... vor, da sie chemisch nahezu keine ................................ eingehen können.

Man findet Edelgase in der ......................... zu einem geringen Anteil.

Wiederholungsfragen Kapitel 9: Gruppen des PSE

Bearbeiten

(Tipp: Wiederhole das Arbeitsblatt: „das Periodensystem der Elemente“)

  1. Wo befinden sich im PSE die Metalle bzw. die Nichtmetalle? Welches sind die Nichtmetalle?
  2. Welche Elemente gehören zu den I) Alkalimetallen, II) Erdalkalimetallen, VII) Halogenen, VIII) Edelgasen?
  3. Beschreibe die im UR durchgeführten Versuche mit Alkalimetallen. Erstelle dann eine Reihenfolge ihrer Reaktivität. Wie würde es innerhalb der Hauptgruppe weitergehen?
  4. Kannst Du mit eignen Worten erklären, warum die Reaktivität zunimmt?
  5. Wie reagieren Erdalkalimetalle mit Wasser und mit Sauerstoff?
  6. Erstelle zu den ersten beiden Hauptgruppen jeweils eine Reaktionsgleichung für die Reaktion mit Wasser bzw. mit Sauerstoff!
  7. Mit welchem Oberbegriff kann man die Verbrennungsprodukte der Alkalimetalle und der Erdalkalimetalle bezeichnen?
  8. Warum verzögert sich der Reaktionsbeginn der Reaktion mit Wasser bei Calcium?
  9. In welcher Form treten Verbindungen von Alkalimetallen und Erdalkalimetallen in der Natur auf? Nenne zu jedem Element zwei Beispiele und markiere dabei für menschliches Leben besonders wichtige!
  10. Halogene werden auch als „Horrorkabinet“ des PSE bezeichnet. Kannst Du dir denken warum?
  11. Nenne Eigenschaften & Besonderheiten zu den ersten vier Halogenen!
  12. Wozu werden Halogene von Menschen verwendet? In welcher Form sind sie lebenswichtig?
  13. Erstelle eine Übersicht mit gemeinsamen Eigenschaften der 7. Hauptgruppe.
  14. Als Nichtmetalle bilden Halogene nebn den Dir bereits bekannten auch sauerstoffhaltige Säuren. Ein typischer Vertreter ist die Chlorsäure (HClO3). Beschreibe seine Herstellung aus den Elementen.
  15. Erstelle eine Übersicht über Eigenschaften und Verwendung der Edelgase!
  16. Beschreibe mit Deinen Worten die folgenden „Tendenzen“ im PSE: Protonenzahl, Außenelektronen, Atomradius, Metallcharakter, Kernladung
  17. Ist Natrium ein Metall? Welche typischen Metalleigenschaften erfüllt es, welche nicht?
  18. Ein Stück Natrium wird auf Wasser gelegt. Beschreibe die Reaktion. Stelle die Reaktionsgleichug auf. Liegt eine Redoxreaktion vor?
  19. Ist die folgende Aussage richtig? „Die Alkalimetalle zeigen eine Abstufung der Eigenschaften“. Gilt diese Aussage auch für die Halogene?

Hilfe zum Auswendiglernen

Bearbeiten

Eine mögliche Hilfe zum Auswendiglernen der Hauptgruppenelemente sind die folgenden Sätze. Noch besser sind natürlich selbst gemachte Merksprüche.

Hauptgruppen

Bearbeiten
  • 1. Heiße Liebe Nachts Kann Räuber (beim) Cusehn Freuen.
  • 2. Bei Maggie Cann Sir Baltimore Rackern.
  • 3. Bauer Alex Gafft Ins Tal.
  • 4. Claus Sieht Gerne Seinen Pflaumenbaum.
  • 5. N' PAsS(b)Bild (Ein Passbild genuschelt ausgesprochen).
  • 6. Otto Sucht Seinen Teller Pommes.
  • 7. Fluor, Chlor, Brom und Iod - Alle Mäuse Tot!
  • 8. Hey, Neun Araber Kriegen Xen (10) Radieschen.

Perioden

Bearbeiten
  • 2. LiBeBCNOFNe lässt sich aussprechen: LIebe BErta Bitte Comme Nicht Ohne Fahrrad, NE?!
  • 3. NaMgAlSiPSClAr auch ein interessantes Fantasiewort

  1. Ein gewisser Schutz vor Fluorvergiftungen ist der sehr starke und äußerst unangenehme Geruch des Gases. (Achtung: Der nicht minder gefährliche Fluorwasserstoff ist geruchlos und daher extrem gefährlich!)
  2. einen hohen Heliumanteil im Erdgas können vor allem amerikanische Quellen vorweisen
  3. Die beiden Isotope des Helium unterscheiden sich in der Fähigkeit, andere Stoffe abzukühlen. Mit 4He lassen sich durch Verdampfungskühlen Temperaturen bis etwa 1K erreichen. Das Isotop 3He erlaubt den Einsatz als Kühlmittel bis etwa 1 mK!

Metalle und Redoxreaktionen & Energiediagramm

Bearbeiten

Wiederholung aus der 8. Klasse - Beispiele für Oxidationen

Bearbeiten
Rosten von Eisen
Eisen + Sauerstoff Eisenoxid

+ Energie
4 Fe + 3 O2 2 Fe2O3 + e-


Verbrennung von Kohlenstoff
Kohlenstoff + Sauerstoff Kohlenstoffdioxid + Energie
C + O2 CO2 + e-


Oxidation von Kupfer
Kupfer + Sauerstoff Kupferoxid + Energie
Cu + O2 CuO + e-


Oxidation = Vereinigung mit Sauerstoff
Stoff x + Sauerstoff Stoff x-oxid + Energie


Die Reaktion von Kupferoxid mit Wasserstoff - eine Redoxreaktionen

Bearbeiten

Seit ca. 2 Milliarden Jahren gibt es Sauerstoff auf unserem Planeten. Metalle sind seit der Entstehung unseres Planeten vorhanden. Da fragt man sich natürlich, in welcher Form eigentlich so wichtige Metalle wie Eisen oder Kupfer vorliegen? Durch Jahrmillionen des Kontaktes mit Sauerstoff liegen sie natürlich in oxidierter Form vor. Die Oxide sind in der Regel für die Menschen nicht zu gebrauchen gewesen, da sie oft Verunreinigt und noch dazu Spröde sind. Die Menschen zogen Waffen und Gegenstände aus Stein vor. Demzufolge nannte man diese Periode der Geschichte auch Steinzeit.

Aber 3000 Jahre v.Chr. änderte sich das plötzlich. Die Waffen der sich bis dahin mit Faustkeilen bewaffneten Steinzeitmenschen hatten sich verändert. Ab der Bronzezeit vor ca. 5000 Jahren hat der Mensch Metallwerkzeuge hergestellt. Was muss passiert sein? Die Menschheit hatte eine ihrer wichtigsten Erfindungen gemacht - sie konnte aus Kupferoxid das Metall Kupfer herstellen und dieses weiter zu Bronze verarbeiten. Bronze war dem Stein natürlich überlegen, da sie formbar war.

Also welche Leistung hat der Mensch am Übergang von der Stein- zur Bronzezeit vollbracht?

Oxidation muss umgekehrt worden sein

Was ist also das Ziel aus chemischer Sicht? (Wenn eine Oxidation die Vereinigung mit Sauerstoff ist...)

Die Abgabe/ Entzug von Sauerstoff aus dem Metalloxid (=Reduktion)

2. Reaktion von Kupferoxid mit Wasserstoff

Bearbeiten

Versuchsbeschreibung

(Schwarzes) Kupferoxidpulver wird im Wasserstoffstrom erhitzt.[1]

Versuchsaufbau Reaktion von Kupfer und Wasserstoff
Versuchsaufbau Reaktion von Kupfer und Wasserstoff


Beobachtung
Flamme wird kleiner, rötliches Produkt, Kondenswasser im Glasrohr, exotherme Reaktion

Schlussfolgerung
Was ist mit dem Kupferoxid geschehen? Es hat seinen Sauerstoff abgegeben!

Redoxreaktion von Kupfer und Wasserstoff
Redoxreaktion von Kupfer und Wasserstoff


Die Abgabe (bzw. den Entzug) von Sauerstoff nennt man Reduktion. Die Reduktion ist der gegenläufige Prozess zur Oxidation.
Wasserstoff ermöglicht diese Reduktion, indem es den Sauerstoff aufnimmt. Wasserstoff ist somit ein „Reduktionsmittel“. Das Reduktionsmittel wird immer selbst oxidiert.

Redoxreaktionen

Bearbeiten

Einem 8. Klässler, wäre allerdings am Ende der 8. Klasse noch etwas anderes aufgefallen… Fällt Dir nichts auf? Na klar, es findet doch auch eine Oxidation statt. Wasserstoff vereinigt sich schließlich mit Sauerstoff es liegt beides vor.

Das führt zu folgendem Rätsel: Muss immer beides vorliegen? Ist dies nun ein Sonderfall, oder gar ein Irrtum?

Diese Frage zu beantworten ist recht einfach, wenn Du Dir einen Vergleich vorstellst: Du bekommst Taschengeld von Deinen Eltern. Zum Austausch eines Geldscheins gehören immer zwei Leute. Einer der den Schein aufnimmt und einer, der ihn abgibt, oder? Es ist nicht nur etwas Dir passiert, sondern auch mit dem der Dir Taschengeld gibt. Du wirst reicher, die andere Person ärmer.

Reduktion und Oxidation liegen immer gekoppelt vor. Man nennt diese Art der Sauerstoffaustauschreaktion Redoxreaktion.

Wie kann man nun eine Redoxreaktion erkennen?

Auch das ist einfach: Das Merkmal einer solchen Redoxreaktionen ist die Sauerstoffübertragung zwischen den Reaktionspartnern.

Historische Herstellung von Kupfer aus Kupferoxid

Bearbeiten

Menschen in der Bronzezeit hatten keinen Wasserstoff als Red-Mittel[2], sondern sie verwendeten ein anderes vorhandenes Reduktionsmittel. Nur welches Element vereinigt sich leicht mit Sauerstoff und reagiert dabei am besten zu einem Gas (damit keine Verunreinigungen entstehen)?

Die Menschen nahmen damals Kohlenstoff. Man hat ihn damals noch überirdisch gefunden und musste nicht tief graben.

Versuchsaufbau der Historischen Kupferoxidherstellung
Versuchsaufbau der Historischen Kupferoxidherstellung

Versuchsbeschreibung

In einer Verbrennungsschale wird Kohlenstoff (fein) verteilt und eine Mulde gebildet. Hinein wird schwarzes Kupfer(II)-oxid gefüllt. Alles wird leicht mit C bedeckt. Mit einem feinen Stab (z.B. Schaschlikstab) werden wenige Löcher hineingestochert! 10-15 min bei geschlossenem Deckel erhitzen! Dann alles in ein Becherglas mit Wasser kippen, damit es sauber wird.

Beobachtung
Exotherme Reaktion, rötliches Produkt am Boden, Eine anschließende Untersuchung des entstehenden Gases mit Kalkwasser zeigt eine Trübung des Kalkwassers.


Schlussfolgerung

Redoxreaktion von CuO + H2 zu Cu + H2O
Redoxreaktion von CuO + H2 zu Cu + H2O
ΔH < 0 (Energieabgabe in Form von Wärme)

es liegt eine Redoxreaktion vor, da Sauerstoff zwischen Kupfer und Kohlenstoff ausgetauscht wird. Kohlenstoffdioxid kann man in einem Bestätigungsexperiment durch den Kalkwassertest nachweisen.

Aufgaben:

Bearbeiten
  1. Formuliert mal eine Reaktionsgleichung, die kennzeichnend für die Eisenzeit ist.
  2. Welche Gefahr besteht beim Erhitzen des Glasrohrs, wenn es mit Wasserstoff durchflutet wird?

Informationen zur Bronzezeit

Bearbeiten

In dieser Periode begannen die Menschen erste Werkzeuge aus Bronze herzustellen. Dazu war Kupfer notwendig, welches sie aus Kupferoxid gewonnen hatten. Der Beginn dieses wichtigen Zeitabschnittes war ab ca. 3000 Jahre v. Chr.

Bronze war das wichtigste Rohmaterial v. a. für Schmuckgegenstände und Waffen. Für die Herstellung der Bronze brauchte man Kupfer (Bronze = 60% Kupfer plus Zinn und manchmal etwas Zink). Ein solches Gemisch von Metallen nennt man Legierung.

Das Wort Kupfer kommt übrigens vom Wort Cypern, da wahrscheinlich dort, die erste europäische Produktion begann. Viele Jahrtausende vorher konnten allerdings schon die Chinesen Bronze herstellen. Weitere frühe Funde stammen aus Anatolien und Ägypten. Dort wurde Kupfererz wurde schon vor 6000 v. Chr. verhüttet. In Mitteleuropa ist die Verarbeitung von Kupfererz seit etwa 3000 v. Chr. bekannt.

frühe Bronzezeit (Anfang 17.Jh.-16. Jh. v. Chr.)
mittlere Bronzezeit (15. bis 13.Jh. v. Chr.)
späte Bronzezeit (12.-9.Jh. v. Chr.)

Abgelöst wurde die Bronzezeit durch die Eisenzeit, in der Bronze zwar weiterhin für Kult- und Alltagsgegenstände verwendet, in der Technik und Waffenherstellung aber vom Eisen verdrängt wurde.

Die Erfindung der Bronze führte auch zu Fortschritten in Handel und Seefahrt. Schließlich mussten auch die Rohstoffe transportiert werden. Es bildeten sich in dieser Periode wichtige Städte, an Flüssen und am Meer entstanden viele neue Häfen. Dies führte zu einer Entwicklung der Kulturen im größten Teil Europas, in Teilen Nordafrikas und in vielen Teilen Asiens.

Heute weiß man darüber einiges, da man viele historische Funde untersucht und genau datiert hat. Zu den Funden gehören Schmuckstücke (Armringe, Ketten, Schnallen, Nadeln) und Waffen (Messer, Dolche, Äxte, Pfeilspitzen, Schwerter).

Zusatzinformationen:

Bearbeiten
Wikipedia hat einen Artikel zum Thema:

Aufgaben:

Bearbeiten

Vervollständige die folgenden Reaktionsgleichungen, kennzeichne Oxidation und Reduktion:

Mg + H2O ? + ?
Pb + C ? + ?
Mg + CO2 ? + ?
H2 + O2 ? + ?
CuO + Zn ? + ?
CuO + Mg ? + ?

Eisen, das wichtigste Metall

Bearbeiten
  • Eisen kommt nicht elementar (gediegen) vor, sondern nur vereinigt als Erz (z.B. mit Sauerstoff).
  • Eisen ist zusammen mit Nickel vermutlich der Hauptbestandteil des Erdkerns.
  • Mit einem Anteil von fünf Prozent ist Eisen aber auch eines der häufigsten Elemente der Erdkruste.
  • Eisen ist das zehnthäufigste Element im Universum.
  • Eisenerz wird im Tagebau (Brasilien, Australien, China u.a.) und Untertagebau (Deutschland, Frankreich u.a.) gewonnen.
  • Eisen ist mit 95% das weltweit am häufigsten genutzte Metall.
  • Wenn Eisen oxidiert, bildet es keine feste Schutzschicht. Der dabei entstehende Rost zerstört Eisen vollständig.
  • Stähle sind Legierungen des Eisens mit 0,002 % bis 2,06 % Kohlenstoff (und anderen Metallen).
  • Eisen ist eines von drei ferromagnetischen Metallen (Kobalt und Nickel sind die übrigen).
  • Obwohl Eisen ein wichtiges Spurenelement für den Menschen ist, kann zu viel Eisen im Körper giftig sein.

In der Natur kommt Eisen (fast) nie gediegen (d.h. als Element) vor. Bekannte Eisenverbindungen sind:

  • Fe2O3 sowie FeO (Eisenoxid)
  • Fe3C (Eisencarbid)
  • Fe(CO)5 (Eisencarbonyl) sowie Fe2(CO)9
  • Fe(SCN)3 (Eisen(III)-thiocyanat, Eisenrhodanid)

Zusatzinformationen:

Bearbeiten
Wikipedia hat einen Artikel zum Thema:

Die Eisenzeit

Bearbeiten

In Mitteleuropa beginnt die Eisenzeit etwa ab dem 8. Jahrhundert v. Chr. Sie begann aber schon vorher in Anatolien ca. 1200 v. Chr. Diese Methode verbreitete sich von dort nach Indien, China und den Mittelmeerraum. Über Italien gelangte das Wissen dann nach Nordeuropa. Die Eisenzeit ist nach der Steinzeit und der Bronzezeit die dritte Periode der Menschheitsgeschichte. In Europa und dem Mittelmeerraum folgte darauf die Antike oder die Völkerwanderungszeit.

In dieser Zeit entdeckten die Menschen einen Weg, nun auch Eisenoxid zu reduzieren, um daraus Eisen für Werkzeuge und Waffen herzustellen.

Die Thermit®-Reaktion

Bearbeiten
Wikipedia hat einen Artikel zum Thema:
Thermit®-Reaktion im Blumentopf bei Nacht

Material: Blumentopf, Alufolie, Magnesiumpulver, Magnesiumband (oder eine Wunderkerze), Aluminiumpulver, Aluminiumgrieß, rotes Eisenoxid.

Diese Reaktion dient dazu, Eisen aus dem Oxid herzustellen. Der Reaktionspartner ist dabei das unedlere Aluminium. Diese Reaktion ist stark exotherm - man muss also mit höchster Vorsicht arbeiten und dringend eine feuerfeste Unterlage benutzen. Es kann passieren, dass mehrere tausend °C heißes Metall herumspritzt, daher Schutzbrille aufsetzen und Sicherheitsabstand einhalten!

Versuchsbeschreibung
Mischen von 15 g getrocknetem Fe2O3 und 5 g Al-Grieß (oder Pulver), ebenfalls trocken. Das Gemisch gibt man in einen Blumentopf, in welchem eine Toilettenpapierrolle steht. Der Rand wird mit Sand gefüllt. Auf das Gemisch gibt man etwas Magnesiumpulver und zündet alles mit einem Magnesiumband oder einer geeigneten Wunderkerze.

Blumentopfversuch
Blumentopfversuch

Beobachtung
heftige Reaktion mit heller Flamme, Funken, sehr heißes, rot glühendes, flüssiges Produkt, welches magnetisch ist.

Schlussfolgerung
Bei der Reaktion von Eisenoxid mit Aluminium entsteht Eisen. Dabei werden sehr große Energiemengen frei. Diese Reaktion wird z. B. zum Schweißen von Eisenbahnschienen verwendet.

Der Hochofen

Bearbeiten

Bei der Thermit®-Reaktion entsteht stark verunreinigtes Eisen. Es ist durchzogen mit Resten von Aluminiumoxid. Außerdem wäre Aluminium ein sehr teurer Reaktionspartner, um Eisen herzustellen. Großtechnisch gibt deshalb einen anderen (besseren & preiswerteren) Weg, große Eisenmengen herzustellen. Die dazu notwendige Industrieanlage nennt sich „Hochofen“.

Betrachtet man mal ein Bild einer Eisenhütte mit Hochofenanlage, ist man über die Größenverhältnisse erstaunt. Ein kleiner Fleck auf dem Bild könnte ein Schiff sein, welches gerade voll beladen ist mit dem Ausgangsstoff Eisenoxid.

Mögliche Eisenerze als Ausgangsstoffe:

Formelzeichen Name
FeO Eisenoxid, auch Magnetkies genannt
Fe2O3 Hämatit (=Roteisenstein)
Fe3O4 Magnetit
FeCO3 Siderit (=Eisenspat oder auch Spateisenstein genannt)
FeS2 Pyrit (Eisenkies bzw. Katzengold genannt))

Wozu ist eine so große Anlage notwendig? brauchen wir alle denn soviel Eisen? Ja, man kann leicht den Jahresverbrauch eines Landes durch die Anzahl der Einwohner teilen und stellt fest, dass jeder Mensch in Deutschland pro Jahr mehr als 100 kg Eisen „benötigt“. Dies wird natürlich nicht nur für Dinge des Haushalts verwendet, sondern auch für Autos, Brücken, Autobahnleitplanken usw.

Im Hochofen entsteht Roheisen. Der Reaktionspartner des Eisenoxid ist hierbei Koks (ausgeglühte Steinkohle). Als Konsequenz enthält das entstehende Roheisen 4-5 Prozent Kohlenstoff als Verunreinigung und ist dadurch recht spröde. Will man eine bessere Qualität erreichen, muss man das Roheisen veredeln.

Gusseisen enthält 2 - 6,5% Kohlenstoff und weitere Legierungselemente, wie beispielsweise Silizium und Mangan. In Abhängigkeit von der Abkühlgeschwindigkeit liegt der Kohlenstoff im Gusseisen als Karbid oder elementar als Graphit vor. Gusseisen ist sehr hart und spröde. Es lässt sich gewöhnlich nicht verformen. Es wird z. B. verwendet für Gullydeckel.

Durch das Windfrischen, einen Vorgang zur Veredlung mit Sauerstoff, der in den heißen Stahl geblasen wird, entsteht Stahl, der zwischen 0,1% und 2,1% Kohlenstoff enthält. Im Gegensatz zu Gusseisen ist er verformbar. Durch Legieren, v. a. mit Nickel, kann er härter und rostfrei gemacht werden.

Die Vorgänge im Hochofen

Bearbeiten
nach  Hochofen

Ein Hochofen ist eine Anlage in Schachtofenbauweise, in der Eisen durch Reduktion von Eisenoxid gewonnen wird. Er ist meist zwischen 25-30 m hoch, die Gesamtanlage kann bis zu 60 m hoch sein.

Der Hochofen wird schichtweise mit zwei wesentlichen Rohstoffen von oben gefüllt: dem so genannten Möller (=als Träger des Eisenoxids und mit Zuschlagstoffen wie Kalk und Kies), und dem Hochofenkoks als Energieträger und Reduktionsmittel. Die Rohstoffe werden mit Förderkübeln über einen Schrägaufzug zur Einfüllöffnung oben am Hochofen befördert und entleert.

Am Fuß des Hochofens oxidiert das aus Koks und Sauerstoff aus der Luft gebildete Kohlenstoffmonoxid zu Kohlenstoffdioxid, der dazu notwendige Sauerstoff wird dem Eisenoxid entzogen, das dadurch zu Eisen reduziert wird.

Verbrennung des Koks, liefert Verbrennungsenergie
Erzeugung des Reduktionsmittels Kohlenstoffmonooxid
Reduktion des Eisenoxids zu elementarem Eisen

Der verflüssigte Hochofeninhalt wird unten am Ofen durch eine Öffnung entnommen. Diese Öffnung ist normalerweise verschlossen und wird periodisch beim so genannten Abstich angebohrt. Der ausfließende Inhalt wird in der an den Ofen angrenzenden Abstichhalle über ein Rinnensystem im Boden geleitet. Die meisten Hochöfen besitzen zwei Abstichvorrichtungen: Eine für die Schlacke und eine etwas tieferliegende für das flüssige Eisen. Hier trennt die Dichte die beiden Stoffe.

Die im Hochofenprozess entstehende Schlacke ist ein wertvoller Rohstoff: sie kann nach Aufmahlen in einer Schlackenmahlanlage als Hüttenzement vielfältig eingesetzt werden.

Die Außenwand des Hochofens wird über eine Wasserkühlung permanent gekühlt. Dennoch herrschen in der Anlage Temperaturen von über 50°C. Ein Arbeiter kann sich trotz gekühlter Schutzanzüge nur wenige Minuten in der Nähe des Hochofens aufhalten.

Mittlere Hochöfen erreichen Tagesleistungen von bis zu 6.000 t, große Hochöfen von bis zu 13.000 t Roheisen.

Hochöfen sind mindestens rund 10 Jahre ununterbrochen in Betrieb. Nach dem Ende dieser so genannten Ofenreise muss der eigentliche Hochofen umfangreich überarbeitet und die Außenhaut ersetzt werden

Im Labor kann man den Hochofenversuch simulieren:

Versuchsbeschreibung
In ein Glasrohr werden Eisenoxid (pulvriges Eisen) und gekörnte Aktivkohle gefüllt. Das Rohr wird von außen erhitzt und mit einem Fön durchgepustet.

Beobachtung
Aufglühen, das rote Eisenoxid wird dunkel

Schlussfolgerung
Die Kohle verbrennt unvollständig. Es entsteht das giftige Gas Kohlenmonoxid. Das Eisenoxid reagiert mit dem Kohlenmonoxid zu Eisen.

Zusammenfassende Reaktion:

Aufgaben:

Bearbeiten
  1. Warum werden die Außenwände gekühlt?
  2. Warum wird der Hochofen nicht Nachts abgeschaltet?
  3. Der Hochofen hat eine nach oben auslaufende Form. Warum?

Der Hochofenprozess

Bearbeiten

Der Aufbau und die Temperaturzonen im Hochofen

Bearbeiten
Chemischer Hochofenprozess
Chemischer Hochofenprozess

Ein Hochofen ist eine bis zu 40m hohe Industrieanlage, in der Eisen aus Eisenoxid gewonnen wird. Er wird von oben mit Förderbändern oder mit so genannten „Hunten“, das sind Metallwagen auf Schienen, gefüllt. Dazu wird ein Gemisch aus Eisenoxid und Koks (das Reduktionsmittel) und Kalk zur Auflockerung gebildet. Dieses Gemisch wird auch Möller genannt.

In oberen kälteren Regionen reagiert Fe2O3 in geringer Hitze zu dem Zwischenprodukt Fe3O4, welches aufgrund seiner höheren Dichte weiter absinkt. Weiter unten ist es durch die ablaufenden Redoxreaktionen und durch zugeführte heiße Luft viel heißer. Hier findet die Umwandlung von Fe3O4 zu einem weiteren Zwischenprodukt satt (FeO). Dies hat eine noch höhere Dichte und es sinkt noch weiter ab. Im heißesten Bereich finden dann die Hauptreaktion statt, bei der aus Kohlenmonoxid und Eisenoxid dann Kohlenstoffdioxid und Roheisen entstehen. Aufgrund seiner hohen Dichte sammelt sich das Roheisen am Boden des Hochofens (darauf schwimmt nur noch die Schlacke aus Kalk und Erzresten, welche alle eine geringere Dichte als Roheisen haben). Das Roheisen wird dann durch eine Keramiköffnung regelmäßig entnommen. Man lässt es über Rinnen im Boden der Abstichhalle fließen.

Die als Abfallprodukt entstehende Schlacke ist ein wichtiger und auch wertvoller Rohstoff. Sie dient beispielsweise als Hüttenzement.

Genaue chemische Reaktionen im Hochofen

Bearbeiten
Energie liefernde Verbrennung des Kokses.
Erzeugung des gasförmigen Reduktionsmittels Kohlenstoffmonoxid.
Reduktion des Eisenoxids zu elementarem Eisen.
Es entsteht der stärker eisenhaltige Magnetit (Magneteisenstein).
Es entsteht Eisen(II)-oxid.
Es entsteht metallisches Eisen, das sich unten im Hochofen ansammelt.
Eisenoxid und siliziumhaltiges Roheisen reagieren zu Eisen (Stahl) und Siliziumdioxid.

Zusatzinformationen

Bearbeiten

 Hochofen,  Gichtgas

Veredelung des Roheisens

Bearbeiten

„Windfrischen“

Bearbeiten

Roheisen aus dem Hochofen ist verunreinigt und besitzt einen viel zu hohen Kohlenstoffgehalt. In flüssiges (kohlenstoffhaltiges) Roheisen wird bei hohen Temperaturen Sauerstoff geblasen. Das Eisen wird wegen der hohen Temperatur nicht oxidiert, aber der Kohlenstoff vereinigt sich umgehend. Es entsteht das Gas Kohlenstoffdioxid, welches den Reaktionsraum verlässt. Das Roheisen wird nun Stahl genannt und enthält nun deutlich weniger Kohlenstoff und ist damit qualitativ wesentlich hochwertiger.

Durch weitere Zusätze, wie z. B. Chrom oder Nickel kann der Stahl weiter veredelt werden. Cr / Ni - Stahl („Nirosta“)

Energiebeteiligung bei chemischen Reaktionen

Bearbeiten

Tipp: Flipchartähnliche Pappen bauen und mit Magneten von Schülern in Diagramme setzen lassen

Versuchsbeschreibung

Magnetversuch
Magnetversuch

Beobachtung

  • selbstständiges, heftiges Durchglühen
  • Rauchbildung
  • weißlicher Feststoff

Schlussfolgerung
Zink vereinigt sich mit Schwefel zu Zinksulfid unter Energiefreisetzung.

0   0   +II-II
Zn + S ZnS + E

Energiediagramm (exotherme Reaktion)

Bearbeiten
Energiediagramm einer exothremen Reaktion
Energiediagramm einer exothremen Reaktion
Chemische Reaktionen, die unter Energieabgabe ablaufen heißen exotherme Reaktionen.

Die freiwerdende Energie kann dabei als Wärme, Licht oder in anderen Formen vorliegen. Chemische Reaktionen, bei denen ständig Energie zugeführt werden muss,

damit sie überhaupt ablaufen, nennt man endotherme Reaktionen.

Energiediagramm (endotherme Reaktion)

Bearbeiten
Energiediagramm einer endothremen Reaktion
Energiediagramm einer endothremen Reaktion
exotherme Reaktionen endotherme Reaktionen
Verbrennungen (Kohle, Magnesium usw.) Erhitzen von Kaliumnitrat und Kalium
Entzündung von Schwefel-Eisen-Gemisch Zersetzung von Quecksilberoxid
Neutralisation Zersetzung von Wasser
Magnesium mit Salzsäure  
Neutralisation (lässt sich leicht zeigen)
||  

Der Katalysator

Bearbeiten

Versuchsbeschreibung
Verbrennung von Zuckern mit und ohne Braunstein (Asche)

V B S
Entzünden von Zucker Karamellisation Änderung des Aggregatzustandes
Entzünden von Zucker-Braunstein Gemisch Zucker brennt Zucker brennt Aufstellen der Gleichung mit Oxidationszahlen.
0 +I -II   0   IV-II   +I -II    
C6H12O6 + 6O2 6CO2 + 6H2O + E
Ein Katalysator ist ein Stoff, der die Aktivierungsenergie einer Reaktion herabsetzt (er hilft sozusagen über den Energieberg). Er nimmt an der Reaktion teil, geht aber am Ende unverändert aus ihr hervor (er nimmt dann von neuem an der Reaktion teil). Die Reaktionsenergie wird nicht verändert. Dadurch wird die Reaktionsgeschwindigkeit erhöht.

Aufgaben:

Bearbeiten

Entscheide bei folgenden Reaktionen, ob es sich um einen exo- oder endothermen Vorgang handelt!

  1. Beim Entladungsvorgang einer Autobatterie werden Bleiverbindungen verändert, und elektrische Energie wird abgegeben.
  2. Holz wird zum Heizen von Häusern verwendet.
  3. Der Mensch und viele Wirbeltiere sind gleichwarm: Die Körpertemperatur bleibt aufgrund der chemischen Umsetzung von Nährstoffen und Sauerstoff bei der Atmung konstant.
  4. Die Explosionen in Verbrennungsmotoren werden in mechanische Energie umgewandelt.
  5. Bauxit enthält einen großen Prozentsatz an Aluminiumoxid. Die Gewinnung von Aluminium wird stets dort durchgeführt, wo billige elektrische Energie zur Verfügung steht.
  6. Quecksilberoxid lässt sich durch Erhitzen in Quecksilber und Sauerstoff zerlegen. (Zersetzung)
  7. Pflanzen speichern bei der Photosynthese Sonnenenergie in chemischer Form in energiereichen Verbindungen (Traubenzucker, Sauerstoff).
  8. Eine starke Säure einer Autobatterie wird zum Entsorgen neutralisiert

Übung: Reduktions- und Oxidationsvermögen von Metallen I

Bearbeiten

Material: je Gruppe: Bunsenbrenner, Reagenzglasklammer, 2 Reagenzgläser,

Führe diese Versuche nicht außerhalb des Chemieunterrichts durch! Sie sind sehr gefährlich und unberechenbar!

Kann man eigentlich durch das pure stattfinden von Reaktionen beurteilen, ob ein Metall edler oder unedler als ein anderes ist? Führe dazu die folgenden beiden Versuche durch und entscheide, welches der beiden Elemente edler ist.

V B S
Mische 1,6 g schwarzes CuO-Pulver und 0,8 g Fe-Pulver.

Erhitze das Gemisch im Reagenzglas bis zum ersten Aufglühen und entferne das Reagenzglas sofort aus der Brennerflamme! SCHUTZBRILLE

  • Das Gemisch glüht nach dem Reaktionsstart selbständig durch,
  • Farbänderung des Reaktionsgemisches von schwarz zu rot,
  • Magnettest negativ
Redoxreaktion
Redoxreaktion

Kupfer ist edler als Eisen und deshalb gibt Kupferoxid leicht seinen Sauerstoff ab
Kupferoxid ist ein gutes Oxidationsmittel

Erhitzen von Cu mit Fe2O3
(Durchführung wie oben)
(In welchem Verhältnis müssen die Chemikalien abgewogen werden? )
(keine Reaktion) Da Kupfer edel ist, wird es nicht so leicht oxidiert - schon gar nicht von einem Oxid eines unedleren Elements!
Oxidationsmittel: CuO (wird bei Redoxreaktion reduziert)
Reduktionsmittel: Fe (wird bei Redoxreaktion oxidiert)
Eisen ist Reduktionsmittel für Kupferoxid, Eisenoxid aber nicht für Kupfer.

CuO ist Ox-Mittel für Eisen, Cu aber nicht für FeO
Der edlere Stoff lässt sich „schwerer“ oxidieren und ist eher bereit seinen Sauerstoff abzugeben

Kupfer ist edler als Eisen
Verhalten von Metallen bei der Redoxreaktion
Verhalten von Metallen bei der Redoxreaktion

Reduktions- / Oxidationsvermögen einiger Metalle und Nichtmetalle II

Bearbeiten

Problemstellung: Kann man weitere Metalle/ Metalloxide in diese Reihe von edeln und unedlen Metallen einordnen (und wie geht man experimentell am einfachsten vor?)

Führe diese Versuche niemals selbst durch!
Sie sind sehr gefährlich und unberechenbar!

V B S
ZnO + Cu keine Reaktion Kupfer ist edler als Zn. Aus diesem Grund kann Kupfer nicht das Zinkoxid reduzieren.
CuO + Zn
(2g CuO/ 1,6g Zn in Reagenzglas erhitzen)
heftige Reaktion, Kupferbildung, Funken

Das unedle Zn entreißt dem Kupfer den Sauerstoff

Redoxreaktion von CuO und Zn
Redoxreaktion von CuO und Zn
CuO + Mg
(nie selbst durchführen! Lehrerversuch, hochgefährlich!)
sehr heftige Reaktion Mg ist sehr unedel und entreißt dem CuO augenblicklich den Sauerstoff!
Redoxreaktion von CuO und Mg
Redoxreaktion von CuO und Mg
Fe2O3 + Mg
(genau so heftig)
sehr heftige Reaktion
Redoxreaktion von Fe2O3 und Mg
Redoxreaktion von Fe2O3 und Mg
MgO mit Zn
(genau so heftig)
sehr heftige Reaktion
Redoxreaktion von MgO und Zn
Redoxreaktion von MgO und Zn
Verhalten von Metallen bei der Redoxreaktion
Verhalten von Metallen bei der Redoxreaktion

Wiederholungsfragen für Zuhause & das Schwimmbad

Bearbeiten

Verschwenderisch leichte Wiederholungsfragen (Klasse 8 und Klasse 9)

Bearbeiten
  1. Wiederhole die Elementsymbole. Erstelle dann eine Übersicht über alle Elemente, die auf „-stoff“ enden.
  2. Beschreibe, was man erhält, wenn man Säure und Lauge gleicher Konzentration mischt. Wie nennt man diese Reaktion? Was ist bei deren Durchführung zu beachten?
  3. Nenne 6 Säuren und 3 Laugen mit Formel!
  4. Was sagt der Massenerhaltungssatz aus? Was sagt der Energieerhaltungssatz aus?
  5. Stelle die Reaktionsgleichung der Bildung folgender Stoffe auf: Fe2O3 ; Schwefeldioxid ; Schwefeltrioxid ; P4O10. Welcher Stoff entsteht, wenn man Phosphoroxid und Wasser mischt?
  6. Welcher Stoff entsteht, wenn man Kohlenstoffdioxid und Wasser mischt?
  7. Stickstoffdioxid reagiert mit Wasser zu Salpetersäure und Salpetriger Säure. Erstelle die Reaktionsgleichung.
  8. Wenn Du unsicher mit Reaktionsgleichungen bist, löse noch einmal einige Gleichungen von den 3 Reaktionsgleichungs-Arbeitsblättern

Fragen zum Periodensystem und zum Atombau

Bearbeiten
  1. Nach welchen Kriterien ist das PSE aufgebaut? Erkläre dazu die Begriffe Hauptgruppen, Perioden & Ordnungszahl, Alkalimetalle, Erdalkalimetalle, Halogene und Edelgase!
  2. Woran kann man erkennen, dass das Elemente im PSE nicht nach der Massenzahl angeordnet sind?
  3. Zeichne den kompletten Aufbau der folgenden Atome (welche von Ihnen haben Edelgaskonfiguration?): Bor, Lithium, Helium, Silicium. Calcium.

Fragen zu Metallen, Redoxreaktionen & Energiediagramm

Bearbeiten
  1. Erkläre den Versuch zur Reduktion von Kupferoxid!
  2. Was versteht man unter Oxidation, Reduktion und Redoxreaktion? Erkläre mit einem Beispiel!
  3. Woran erkennt man Redoxreaktionen?
  4. Liegt bei dem Luftballon-Explosionsversuch eine Redoxreaktion vor? Begründe mit einer Reaktionsgleichung!
  5. Nenne drei Wege (mit Reaktionsgleichung) aus CuO das metallische Element zu gewinnen!
  6. Was ist der Hochofenprozess? Erkläre umfassend !
  7. Beschreibe das Thermit®-Verfahren!
  8. Wie unterscheidet sich der Hochofenprozess vom Thermit®-Verfahren, wo liegen Gemeinsamkeiten?
  9. Wie kann aus Bleioxid (PbO) Sauerstoff und Blei gewonnen werden?
  10. Ist die Zersetzung von Wasser eine Redoxreaktion? Zeichne den Versuchsaufbau und begründe!
  11. Kann man zu Kohlenstoffdioxid verbrannten Kohlenstoff wieder zurückgewinnen? (schwere Aufgabe)
  12. Zum Knobeln: Benzin (C8H18) verbrennt an der Luft zu Wasser und Kohlenstoffdioxid. Erstelle die Reaktionsgleichung und dass passende Energiediagramm. Liegt eine Redoxreaktion vor? Begründe.
  13. Erkläre die Begriffe „endotherme Reaktion“ und „exotherme Reaktion“ mit je einer Beispielreaktion und zeichne das passende Energiediagramm. (Vergisst Du die Achsen zu beschriften, schreibe alle Fragen 137 mal ab!!!)
  14. Was ist ein Katalysator? Nenne Aufgaben und beschreibe sein Verhalten z. B. bei der Verbrennung von Zucker. Erstelle die Reaktionsgleichung [Zucker: C6H12O6] und zeichne anschließend ein Energiediagramm der katalytischen Zuckerverbrennung.
  15. Vergleiche Kupfer und Eisen hinlänglich ihrer Eigenschaften.
  16. Nenne Eigenschaften von Aluminium? Wie wird es herstellt?
  17. Ist Natrium ein Metall? Welche typischen Metalleigenschaften erfüllt es, welche nicht?
  18. Ein Stück Natrium wird auf Wasser gelegt. Beschreibe die Reaktion. Stelle die Reaktionsgleichug auf. Liegt eine Redoxreaktion vor?
  19. Ist die folgende Aussage richtig? „Die Alkalimetalle zeigen eine Abstufung der Eigenschaften“.
  20. Gilt diese Aussage auch für die Halogene?
  21. Vergleiche die Reaktion von ZnO + Cu mit der Reaktion von CuO + Zn. Welches der beiden Metalle ist edler?
  22. CuO reagiert mit Mg explosionsartig. Stelle eine Reihung (edel/ undel) der Metalle Au, Ag, Cu, Mg, Na und Zn auf
  23. In der Natur kommen die meisten Metalle als Oxid vor (also nicht als Element). Gold, Silber und Kupfer hingegen auch in gediegener Form (= als Element). Was vermutest Du als Ursache?
  24. Warum hat die „Erfindung“ der Eisenherstellung länger gedauert als die der Kupferherstellung?
  25. Ist Bronze ein Element?

  1. Sicherheitsvorschriften beachten - Knallgasprobe mehrfach durchführen und S. erklären
  2. Es wurde Malachit verwendet (Cu2(OH)2CO3), welches beim Erhitzen in Kupferoxid überging

Ionen, Salze, Fällungsreaktionen und Ionenbindung

Bearbeiten

Leitfähigkeitsmessung von Lösungen

Bearbeiten

Ganz am Anfang dieses Kurses haben wir die Leitfähigkeit von Elementen gemessen. Metalle hatten wir damals festgestellt leiten den elektrischen Strom in der Regel gut. Was ist aber mit Lösungen?

Versuchsbeschreibung
In Wasser werden verschiedene Salze (NaCl, KCl, Na2SO4) sowie Harnstoff und Zucker gegeben. Es sollte immer die gleiche Flüssigkeitsmenge zugegeben werden und auch die gleiche Menge Feststoff. Die Leitfähigkeit wird dann gemessen.

Versuchsaufbau Leitfähigkeit von Lösungen
Versuchsaufbau Leitfähigkeit von Lösungen

Beobachtung

wässrige Lösung von Wasser NaCl KCl Na2SO4 Harnstoff Zucker
Leitfähigkeit sehr gering ++ ++ + sehr gering sehr gering
mögliche Werte bei 3V 0,03 mA 1500mA 1400mA 800mA 0,03 mA 0,03 mA

Wenn man nicht immer die gleiche Salzmenge zugibt, sieht man, dass je mehr Salz in das Wasser zugegeben wird, desto höher die Leitfähigkeit der Lösung ist.

Weißt Du eigentlich (noch), was Leitfähigkeit ist?

Unsere Apparatur misst eigentlich die Stromstärke [I]. Sie gibt an, wie viele Elektronen durch die Lösung vom Minuspol zum Pluspol wandern.

Aber wie aber gelangen die Elektronen vom Minuspol (Pol erfragen!) zum Pluspol?

Salze zerfallen beim Lösen in geladene Teilchen. Diese geladenen Teilchen transportieren die Ladungen des elektrischen Stroms von der 1. Elektrode durch das Wasser zur zweiten Elektrode.

Dabei kann man sich vorstellen, dass sie die Elektronen „tragen“, wie ein Wanderer einen Rucksack trägt. Da das altgriechische Wort für Wanderer ionos lautet, nennen die Chemiker alle geladenen Teilchen Ionen.

Je mehr Salz sich dabei auflöst, desto mehr erhöht sich die Leitfähigkeit, da mehr Ionen in der Lösung vorhanden sind.
  • Leitungswasser leitet übrigens auch minimal den elektrischen Strom, da in ihm winzige Mengen von Mineralsalzen enthalten sind.
  • Zucker und Harnstoff sind keine Salze, deshalb erhöhen sie die Leitfähigkeit des Wassers nicht.

Welche geladenen Teilchen sind in der Lösung enthalten?

Im Kochsalz NaCl sind geladene Na und Cl Ionen vorhanden.

Sind die geladenen Teilchen schon im Feststoff NaCl vorhanden?

Bearbeiten

Versuchsbeschreibung
Messung der Leitfähigkeit von festen Salzen

Beobachtung
Die festen Salze leiten den elektrischen Strom gar nicht!

Schlussfolgerung
Salze sind aus Ionen aufgebaut. In der Lösung (sowie in geschmolzener Form) sind die Ionen frei beweglich und können Ladungen;transportieren, im Feststoff nicht! Das heißt nicht, dass im Feststoff keine Ionen vorhanden sind - sie sind halt nur nicht beweglich!

Nur in Salzlösungen und Salzschmelzen sind die Ionen beweglich

Salzkristalle leiten den e- Strom nicht.

Definition: Ionen sind elektrisch geladene Atome oder Moleküle.

Ionen mit positiver Ladung werden Kationen genannt, Ionen mit negativer Ladung Anionen.

Ionenwanderung

Bearbeiten

Versuchsbeschreibung
Das mit Natriumchloridlösung getränkte Filterpapier, wird an den Enden mit einem gefaltetem Kupferblech und einer Krokodilklemme an die Gleichspannungsquelle angeschlossen. Auf der Filterpapiermitte werden die Probesubstanzen aufgelegt (Kupfersulfat, Kaliumdichromat und Kaliumpermanganat - Kristalle). Versuche die mittlere Ionenwanderungsgeschwindigkeit zu bestimmen.

Versuchsaufbau Leitfähigkeit von Lösungen
Versuchsaufbau Leitfähigkeit von Lösungen

Beobachtung
zum Pluspol sieht man eine orange und violette Färbung, zum Minuspol eine blaue.

Schlussfolgerung
Unter dem Einfluss des elektrischen Feldes wandern die positiv geladenen (Kationen) Kupferionen zum Minuspol (Kathode), die negativ geladenen Chromationen (Anionen) wandern zum Pluspol (Anode).

Edelgaskonfiguration

Bearbeiten

Siehe Kapitel Edelgase!

Wdh.: Edelgase sind die Elemente der 8. Hauptgruppe.

Edelgase sind besonders reaktionsträge und chemisch sehr stabil. Es existieren nur wenige bekannte Verbindungen (z.B. Xenonhexafluorid) Edelgase haben eine voll besetzte äußere Elektronenwolke (= voll besetzte Anzahl an Valenzelektronen), dadurch sind sie chemisch besonders stabil und reaktionsträge

Eine Elektronenwolke kann genau 2n2 Elektronen aufnehmen. (n= Periodennummer = Anzahl an Elektronenwolken)
Elemente der 1. Periode haben mit  2 e- Edelgaskonfiguration
Elemente der 2. Periode haben mit  8 e- Edelgaskonfiguration
Elemente der 3. Periode haben mit 18 e- Edelgaskonfiguration

Zusatzinformationen:

Bearbeiten

 Edelgase

Welche Ionen sind in Natriumchlorid zu finden?

Bearbeiten

Bildung des Na- Ions

Bearbeiten

hat 1 Außenelektron.

Was muss passieren, damit eine vollbesetzte Außenelektronenwolke vorliegt?


Dieses Außenelektron wird abgegeben. Dem verbleibenden Teilchen fehlt es nun, dadurch ist es positiv geladen.

Abgabe eines Außenelektrons
Abgabe eines Außenelektrons

Wie kommt es zur positiven Ladung?

In der atomaren Form liegen je 11 negative und 11 positive Ladungen vor. Entfernt man ein negatives Elektron, dann bleibt eine positive Ladung „über“.
Das Ion ist also einfach positiv geladen

Hinweis: In Reaktionsgleichungen werden keine Elektronen „abgezogen“ oder „subtrahiert“. Für die Gleichung wird stattdessen von eine „Aufspaltung“ in Elektron und Ion ausgegangen.

Bildung des Cl- Ions

Bearbeiten

hat 7 Außenelektronen.

Was muss passieren, damit eine vollbesetzte Außenelektronenwolke vorliegt?


Eine Außenelektron wird aufgenommen. das neue Teilchen hat nun ein Elektron mehr und somit eine negative Ladung mehr als vorher. Dadurch ist es negativ geladen.

Abgabe eines Außenelektrons
Abgabe eines Außenelektrons

Wie kommt es zur negativen Ladung?

In der atomaren Form liegen je 17 negative und 17 positive Ladungen vor. Fügt man nun ein negatives Elektron hinzu, dann liegt eine negative Ladung im Überschuss vor.
Das Ion ist also einfach negativ geladen.

Zusatzinformation:

Bearbeiten

Fast jedes Element kann sowohl atomar, als auch in ionischer Form auftreten. Salze sind aus Ionen aufgebaut.

Aufgaben:

Bearbeiten

Welche Ionen bildet:

a) LiF
b) MgO
c) HCl [1]
d) CaF2

Erklärung nach den Besetzungsregeln des Orbitalmodells

Bearbeiten
Energieniveauschemen von Natrium und einem Natriumion
Energieniveauschemen von Natrium und einem Natriumion

Exkurs: Folie: Hinweis auf vollbesetzte Energieniveaus der Edelgase
Nach Möglichkeit „streben“ Elemente vollbesetzte Energieniveaus an!

Welche Ladung kann ein Natriumion tragen, damit es nur vollbesetzte Energieniveaus hat?

+1
Natriumatom Natriumion
11 Elektronen davon 1 Valenzelektron 10 Elektronen, davon 8 VE
keine voll besetzt E-Wolke voll besetzte Valenz-Schale
chemisch eher instabil und reaktiv stabilerer Zustand (energetisch günstiger)
  wenig reaktiv
Energieniveauschemen von Chlor und einem Chlorion
Energieniveauschemen von Chlor und einem Chlorion

Welche Ladung kann ein Chloridion tragen, damit es nur vollbesetzte Energieniveaus hat?

-1
Chloratom Chloridion
17 Elektronen davon 7 Valenzelektron 18 Elektronen, davon 8 VE
keine voll besetzt E-Wolke voll besetzte Valenz-Schale
chemisch sehr reaktiv stabilerer Zustand (energetisch günstiger)
  wenig reaktiv

Eigenschaften der Salze

Bearbeiten

Der Schmelzpunkt von Salzen ist sehr hoch.

Bearbeiten

In Salzen liegen also Ionen vor. Diese haben eine positive oder negative Ladung. Natriumchlorid besteht aus positiven Natriumionen und negativen Chloridionen. Positive und negative Ionen ziehen sich gegenseitig an. Besonders im Feststoff ist diese Anziehung besonders stark. Aus dem Kapitel über die Eigenbewegung der Teilchen weißt Du schon, dass alle Teilchen schwingen. Also auch Ionen!

Was passiert nun beim Schmelzen eines Salzes?

Ionen beginnen zu schwingen und brechen dadurch den „Ionenverbund“ aus positiven und negativen Ionen auf. Ionen werden frei beweglich, das Salz schmilzt.
Beim Schmelzen von Salzen werden dabei also die Ionen voneinander getrennt. Durch Zufügen von Energie erhöht sich dabei die Eigenschwingung der Ionen. Überschreitet die Energie den Schmelzpunkt, ist die Schwingung so groß, dass der Verband aus Ionen „zusammenbricht“.
Insgesamt kann man sagen, dass bei Salzen der Schmelzpunkt. sehr hoch ist, da die Ionen sich durch die Ionenladung gegenseitig zusammenhalten und man „mehr“ Wärmeenergie zufügen muss, um den Verbund zu lösen, als bei Verbindungen, die keine Ladungen enthalten (z.B. Zucker).

Charakteristische Eigenschaften von Salzen:

Bearbeiten
  • Salze sind aus Ionen aufgebaut
  • Salzschmelzen und wässrige Lösungen leiten den elektrischen Strom ( freie bewegliche Ionen)
  • Salzkristalle leiten den elektrischen Strom nicht!
  • Salze sind bei Raumtemperatur Feststoffe. Sie haben einen hohen Schmelzpunkt
  • Salzkristalle sind hart und spröde
  • Sie bestehen immer aus einem oder mehreren Metallion und einem oder mehreren Säurerestion
  • Nach „außen“ hin sind Salze ungeladen

Salzgewinnung:

Bearbeiten
Salze sind für den Menschen unentbehrlich. Das wichtigste ist dabei das Kochsalz (Natriumchlorid). Es wurde im Mittelalter auch das „weiße Gold genannt“. Salz war stets ein wichtiges Handelsgut. Es fand sogar mehrfache Erwähnung in der Bibel. Viele Städte tragen das Wort Salz (oder das Keltische Wort Hall) im Namen. (z.B. Halle, Reichenhall, Hallein, Hall, Schwäbisch Hall, Salzburg, Salzgitter, Bad Salzuffeln, Salzdettford, Bad Salzschlirf).
Menschen gewinnen Salz entweder durch Meerwasserentsalzung, Salzstöcke oder aus Solen. Städte, die im Mittelalter über Salzlager verfügten waren in der Regel dadurch sehr reich.
Gebrauch von Salzen: Kochsalz, Soda (für Seifensiedereien, Glashütten), Waschstoff, Chlorherstellung (Bleich- und Desinfektionsmittel, für die PVC-Herstellung), Streusalz...

Zusatzinformationen:

Bearbeiten

 Salze

Kochsalz „NaCl”

Bearbeiten

 Natriumchlorid

  • Als Speisesalz wird Natriumchlorid zur Würzung von fast allen Speisen (wenn auch in sehr unterschiedlichen Mengen) benutzt. Es ist für den Menschen lebenswichtig.
  • Große Mengen an Salz werden als Streusalz (Auftausalz) im Winter verwendet. Der Effekt der Schmelzpunkterniedrigung wird im Labor auch bei der Bereitung von Kältemischungen genutzt.
  • Natriumchlorid ist ein wichtiger Rohstoff für die chemische Industrie, insbesondere zur Gewinnung von Chlor und Natriumhydroxid in der Chlor-Alkali-Elektrolyse.
  • Als Regeneriersalz für Geschirrspülmaschinen und bei Wasseraufbereitungsanlagen.
  • Eine 0,9%ige Lösung von Natriumchlorid in Wasser wird in der Medizin als physiologische Kochsalzlösung zur Auffüllung des Blutvolumens verwendet; sie ist isoosmotisch mit dem Blutplasma.
  • Zur Konservierung von Lebensmittel, z.B. Pökelfleisch, Einlegen von Fisch usw.

Wie bestimmt man Ionenladungen?

Bearbeiten

In der Chemie verwendet man meist drei Typen von Stoffen

Bearbeiten

a) Elemente (stehen im PSE). Ihre Formel ist immer so, wie sie dort stehen (z.B. Mg oder Fe), bis auf die Ausnahmen Wasserstoff, Stickstoff, Sauerstoff und 7.HG. Diese liegen immer als 2fach Molekülelement vor (z.B. H2, O2, N2, F2, Cl2 ...)
b) Molekülverbindungen aus mehren Elementen (z.B. H2O, CO2 oder NH3 ), Ihre Formel muss man kennen (also lernen - sind ja aber auch meist bekannt - sind die üblichen)
c) Salze und Oxide (Oxide werden als oft Salze behandelt, haben aber statt des Säurerestes der Salze das „O“.
z.B.: Salze: KCl, Na2SO4, Ca3(PO4)2

  Oxide: CuO, Fe2O3, Na2O

Aufgaben:

Bearbeiten

Schüler Ionen zeichnen und Ladung bestimmen lassen. Dabei werden von Wasserstoff bis Calcium alle an einzelne Schüler verteilt. In Vierergruppen werden die Ionen dann an die Tafel geschrieben und ins Heft schnell abgeschrieben. Die Sonderrolle des Wasserstoffs wird in der Folgestunde besprochen.

Zum Ende der Stunde werden allgemeine Regeln abgeleitet:

Oberstes Gebot: Die Anzahl an Valenzelektronen des ungeladenen Atoms bestimmt die Ionenladung. Ziel ist es dabei i.d.R. Edelgaskonfiguration zu erhalten

Die Ladung einatomiger Ionen entspricht bei Elementen der 1.- 3. Hauptgruppe der Hauptgruppennummer.
  • Die Elemente der 1. Hg bilden 1fach positive Ionen (z.B.: Li Li+ + e-)
  • Die Elemente der 2. Hg bilden 2fach positive Ionen (z.B.: Ca Ca2+ + 2e-)
  • Die Elemente der 3. Hg bilden 3fach positive Ionen (z.B.: Al Al3+ + 3e-)
Bei den restlichen Elementen kann sie der Anzahl an Elektronen entsprechen, die zum Erreichen von vollständig besetzten Energiestufen aufgenommen (oder abgegeben werden) müssen:
Bsp. Sauerstoff hat 6 VE zur vollbesetzten Energiestufe fehlen 2 e- O2- - Ion
  • Elemente der 7. Hg bilden oft 1fach negative Ionen (wenn sie überhaupt Ionen bilden) (z.B.: Cl Cl- + e-)
  • Elemente der 6. Hg bilden oft 2fach negative Ionen (wenn sie überhaupt Ionen bilden) (z.B.: O O2- +2e-)
  • Elemente der 5. Hg bilden oft 3fach negative Ionen (wenn sie überhaupt Ionen bilden) (z.B.: N N3- + 3e-)
  • Metalle bilden positive geladene Ionen (= Kationen), Nichtmetalle bilden (wenn sie Ionen bilden) negativ geladene Ionen (=Anionen)
  • Nebengruppenelemente (Fe, Cu, Zn) bilden „Kationen“ verschiedener Ladungen
  • Edelgase bilden keine Ionen
Aufgaben
  1. Ionen entstehen durch...
  2. Na+ -Ionen unterschieden sich von Na-Atomen durch...
  3. Welche Eigenschaften haben Ionen
  4. Erkläre den Begriff Ionenbindung
  5. Wie bestimmt man die Ladung eines Säurerestes?
  6. Welche Voraussetzungen müssen gegeben sein, damit Ionen den Strom leiten?
  7. Schlage Im Periodensystem nach, wie sich die Atom- und Ionenradien bei drei von Dir gewählten Elementen unterscheiden
  8. Bestimme die Ionenladungen der folgenden Ionen:
Na, Cl, Mg, Li, Sr, Be, S, O, Al, Os, C, H , K, Ca, Ba, Br, I, F, Ne

Welche Ionenladung hat das Wasserstoffion?

Bearbeiten

Wasserstoff hat nur ein einziges Elektron. Es kann zum Erreichen der vollbesetzten Außenelektronenwolke ein e- aufnehmen oder abgeben.

Ionenladung des Wasserstoffs
Ionenladung des Wasserstoffs
Während einige Metalle mit dem Hydrid Verbindungen eingehen,so ist (v.a. in der Schule) das H+ der häufigere Reaktionspartner.

Die Ionenbindung

Bearbeiten

Vom Magnetismus aus dem Physikunterricht kennst Du die Anziehung der unterschiedlichen Pole und die Abstoßung von gleichsinnigen Polen. In der Chemie hast Du nun positive und negative elektrostatische Ladungen bei Ionen kennen gelernt. Auch diese ziehen sich bei unterschiedlichem Vorzeichen an und stoßen sich bei gleichem Vorzeichen ab.

Ionen ungleicher Ladung ziehen sich an und verbinden sich

Dabei müssen positive und negative Ladungen ausgeglichen sein, so dass die entstehende Verbindung „nach außen“ ungeladen ist.

Die Verbindung von Ionen zu einer Verbindung nennt man Ionenbindung

Zusammensetzung der Salze

Bearbeiten

Bei festen Salzen sind sich immer (positive) Metallionen mit (negativen) Säurerestionen miteinander verbunden. Im gelösten Zustand enthält die Lösung beide Ionensorten, welche sich in der Lösung frei bewegen. Dieses kennzeichnet man durch ein „(aq)“ am Ion. (z.B. Li+(aq))

Metallion   Säurerestion
Lithium: Li+   Cl- Chlorid
Kalium: K+   F- Fluorid
Natrium: Na+   Br- Bromid
Magnesium: Mg2+   I- Iodid
Calcium: Ca2+   S2- Sulfid
Barium: Ba2+   (NO3)- Nitrat
Aluminium: Al3+   (SO4)2- Sulfat
Kupfer: Cu2+   (SO3)2- Sulfit
Silber: Ag+   (CO3)2- Carbonat
Eisen: Fe2+ / Fe3+   (PO4)3- Phosphat

Liste einiger wichtiger Anionen

Bearbeiten
Ion Name Ion Name Ion Name
SO42- Sulfat NO3- Nitrat ClO4- Perchlorat
HSO4- Hydrogensulfat NO2- Nitrit ClO3- Chlorat
SO32- Sulfit S2- Sulfid NH4+ Ammonium
MnO4- Permanganat S2O32- Thiosulfat PO43- Phosphat
CrO42- Chromat CO32- Carbonat HPO42- Hydrogenphosphat
Cr2O72- Dichromat HCO3- Hydrogencarbonat H2PO4- Dihydrogenphosphat

Aufgaben:

Bearbeiten
  1. Trage alle Ionenladungen der Säurereste auf dem Säurezettel des letzten Jahres ein!
  2. Bestimme die Ionenladungen der folgenden Ionen:
    Na, Cl, Mg, Li, Sr, Be, S, O, Al, Os, C, H,  K, Ca, Ba, Br, I, F, Ne
  3. Wie lautet die richtige Formel für folgende Salze:
    • Natriumchlorid (= Kochsalz):
    • Bariumsulfat:
    • Magnesiumcarbonat:
    • Natriumsulfat:
    • Lithiumnitrat:
    • Kaliumbromid:
    • Calciumphosphat:
    • Aluminiumsulfat:

Übungen

Bearbeiten

Schreibe hinter jedes Symbol die passende Ionenladung und kombiniere anschließend die Ionen zu nach „außen“ hin ungeladenen Salzen. Schreibe unter die Salzformel den passenden Namen

Name des Metallion Name des Nichtmetalls/Nichtmellverbindung
  F Cl S O NO3 SO4 PO4
K              
Li              
Na              
Ca              
Al              
Fe2+              
Fe3+              
Pb              
Cr              
Cu              

Nomenklatur bei Salzen

Bearbeiten

Salze werden nach mit dem Atomnamen des Metallions und dem Säurerest benannt. Die Wertigkeit des Metallions kann dabei durch eine griechische Zahl angegeben werden. Bsp.: Eisen (III) Chlorid

Zahlenwert Vorsilbe
1 mono
2 di
3 tri
4 tetra
5 penta
6 hexa
7 hepta
8 octa
9 nona
10 deca

Zusammenfassung Ionen

Bearbeiten
  1. Vervollständige die Sätze
    • Ionen entstehen durch ...
    • Ionen unterschieden sich von Atomen durch ...
    • Salze sind so aufgebaut, dass ...
    • Ionen haben die Eigenschaften ...
    • Ionenladungen bestimmt man ...
    • Die Ladung eines Säurerestes kann man bestimmen, indem…
  2. Welche Voraussetzungen müssen gegeben sein, damit Ionen den Strom leiten?

Übungstest zum Thema „Salze und Ionen“ I

Bearbeiten
guter Leiter? j/n Stoff Erklärung
  Zuckerlösung  
  Magnesiumchloridlösung  
  Natriumsulfatkristall  
  Kochsalzschmelze  
  Silberchlorid in Wasser  
  Wasser aus der Leitung
  Metallstab  
  Kohlenstoffdioxid  
Natriumion:   Nitration:   Sulfation:   Carbonation:
Berilliumion:   Chloridion:   Sulfidion:   Fluoridion:
Magnesiumion:   Phosphation:   Oxidion:   Silberion:
  F Cl S SO4 CO3 PO4
K            
Li            
Ca            
Al            
Ba            
Ag            
  1. Welche der in der Tabelle sind gute Leiter für elektrischen Strom? (je 0,5P 4P)
  2. Definiere den Begriff „Ion“! (2P)
  3. Welche Unterschiede bestehen zwischen Natrium als Element und dem Natriumion? (4P)
  4. Unterstreiche bei den Begriffen Anionen in rot und Kationen in grün und notiere dann die entsprechende Formel mit ihrer Ionenladung. (Begriffe je Ion 0,25P + je Formel 0,25P 6 P)
  5. Bestimme die Ionenladungen der Ionen in der Tabelle rechts und erstelle dann die Summenformel, welche sie im entsprechenden Salzkristall haben. Zum Schluss markiere die schwerlöslichen Salze! (je 0,25P 9P)
  6. Nenne die allgemeine Regel, nach der Salze aufgebaut sind und beschreibe dann die genaue Anordnung. Gehe dabei auch auf den vorliegenden Bindungstyp ein. (4P)
  7. Wenn man in Trinkwasser Silbernitratlösung tropft, kommt es zu einer leichten Trübung. Beschreibe die Reaktion genau und benenne den sich bildenden Stoff. (Rückseite) (6P)

4 Möglichkeiten der Salzbildung

Bearbeiten

Salze lassen sich auf mehreren Wegen bilden. Diese sind auch in der Natur so zu finden.

1. Salzbildung durch Neutralisation

Bearbeiten

Diesen Weg kennst Du schon aus dem Kapitel „Neutralisation“.

Versuchsbeschreibung
Zu Schwefelsäure wird erst etwas Universalindikator und dann tropfenweise Kalilauge zugefügt. Die neutrale Lösung wird eingedampft.

Beobachtung
Lösung wird warm, nach dem Eindampfen liegt ein weißer Feststoff vor.

  Bsp.: H2SO4 + 2 KOH K2SO4 + 2 H2O + E
    Säure + Lauge Salz + Wasser + Energie

2. Salzbildung aus Metalloxid und Säure

Bearbeiten

Versuchsbeschreibung

a) Etwa 4 cm Magnesiumband wird mit einer Tiegelzange in die Bunsenbrennerflamme gehalten. Gib das Reaktionsprodukt in ein Reagenzglas. (Hinweis: Nicht in die Flamme schauen!)
b) Salzbildung: In das Reagenzglas wird verdünnte HCl gegeben (etwa 2cm hoch).Dampfe anschließend die Lösung ein. Benutze dabei unbedingt die Schutzbrille!

Beobachtung

a) Mg verbrennt mit sehr heller Flamme. Das Reaktionsprodukt ist ein weißes Pulver. Das Oxid löst sich in der Säure, beim Eindampfen erhält man einen farblosen Feststoff.

Schlussfolgerung

a) 2 Mg + O2 2 MgO           (Magnesiumoxid)
b) MgO + 2 HCl H2O + MgCl2     (Magnesiumchlorid)
  Metalloxid + Säure Salz + Wasser + Energie

3. Salzbildung aus Nichtmetalloxid und Lauge

Bearbeiten

Versuchsbeschreibung

a) Herstellung von frischem Kalkwasser Überschichte 2 Spatelspitzen CaO mit Wasser und schüttle kräftig. Filtriere die entstandeneLösung. [genaue Anleitung und Demonstration!]
b) Salzbildung: Blase mit Hilfe einer Pipette mehrmals ausgeatmete Luft in die Lösung.
Beobachtung
Schlussfolgerung
a) Nur ein Teil des CaO löst sich in Wasser a) CaO       + H2O Ca(OH)2 (Kalkwasser)
b) Die Lösung färbt sich milchig-trüb b) Ca(OH)2 + CO2 CaCO3 + H2O + E

Calciumcarbonat (Kalk) ist ein schwerlösliches Salz. Es löst sich nur in geringem Maße[2]

Nichtmetalloxid + Lauge Salz + Wasser + E

Anmerkung: Im Grunde entsprechen die Wege 2. und 3. dem ersten, da in Nichtmetalloxide mit Wasser Säuren bildet und Metalloxide mit Wasser Laugen entstehen lassen.

4. Salzbildung aus den Elementen

Bearbeiten

Versuchsbeschreibung
ca. 5 g Magnesium (alternativ Zink) werden mit ca. 3 g Iod (I2) vorsichtig vermischt. Das fertige Gemisch wird dann auf ein Uhrgläschengebracht und im Abzug vorsichtig mit wenigen Tropfen Wasser aus der Spritzflasche benetzt. Alternativ kann der Versuch im Reagenzglas durchgeführt werden. Dann kann nach Reaktionsende deutlich mehr Wasser zugefügt werden, in dem sich das Salz löst. Das Wasser wird ab dekantiert und anschließend eingedampft.

Versuchsaufbau der Salzbildung aus Elementen im Uhrglas
Versuchsaufbau der Salzbildung aus Elementen im Uhrglas
Versuchsaufbau der Salzbildung aus Elementen im Reagensglas
Versuchsaufbau der Salzbildung aus Elementen im Reagensglas

Beobachtung
Heftige Reaktion, Bildung eines hellen Feststoffs, violette Ioddämpfe, Der Feststoff löst sich in Wasser. Nach dem Eindampfen der Lösung ist er am RG-Boden sichtbar.

Schlussfolgerung
Bei der Reaktion von Mg und I2 entsteht (festes) Magnesiumiodid. Dieses ist aus Ionen aufgebaut (Salz!) Bei der Reaktion hat ein Magnesiumatom Elektronen an 2 Iodatome abgegeben:

Schlussfolgerung
Es ist das Salz Magnesiumiodid entstanden

  Mg Mg2+ + 2 e-    
  I2 + 2 e- 2 I-

Mg + I2 Mg2+ + I2- + E

Metall + Nichtmetall Salz

Aufgaben

Bearbeiten
  • Vervollständige die Gleichungen:
Metalloxid + Säure:
  Calciumoxid + Salzsäure        
  CaO + __HCl   +  
  Calciumoxid + Phosphorsäure        
  CaO + __H3PO4   +  
Nichtmetalloxid + Lauge:
  Schwefeldioxid + Barytwasser        
  SO2 + __Ba(OH)2   +  
  Kohlendioxid + Natronlauge        
  CO2 + __NaOH   +  
Metall + Nichtmetall:
  Magnesium + Brom        
  Mg + __Br2   +  
  Eisen + Chlor (es entsteht Eisen (III)clorid)  
  __Fe + __Cl2   +  
  • Wiederhole die Edelgasregel
  • Wenn Du eine Energiebetrachtung zu allen Salzbildungen durchführst, was fällt dann auf?

Salzbildung II: Die Bildung von Zinksulfid aus den Elementen

Bearbeiten

Versuchsbeschreibung
Zur Vereinigung von Zink und Schwefel werden beide Elemente miteinander vermischt und auf einem Drahtnetz mit einem glühenden Draht entzündet. ([2 : 1], kleine Mengen, Abzug, Schutzbrille!])

Versuchsaufbau Bildung von Zinksulfat aus den Elementen
Versuchsaufbau Bildung von Zinksulfat aus den Elementen

Beobachtung
Sehr heftige Reaktion, Rauchentwicklung

Schlussfolgerung
Es fand eine Salzbildung statt. Die Reaktion ist stark exotherm. Der neue Stoff heißt Zinksulfid.

Zum Aufstellen der Reaktionsgleichung muss man wissen, dass Zn zwei Valenzelektronen besitzt.

  Zn Zn2+ + 2 e-    
  S + 2 e- S2-

Zn + S Zn2+ + S2- + E

Elektrolyse einer (wässrigen) Kupferchloridlösung

Bearbeiten

Eine Elektrolyse ist eine Aufspaltung einer Verbindung mit Hilfe von elektrischem Strom. Viele Elektrolysen sind in der Technik sehr wichtig: Die reine Form der Metalle Aluminium und Magnesium können nur elektrolytisch hergestellt werden.

Versuchsbeschreibung
In diesem Versuch soll durch Elektrizität Kupferchlorid gespalten werden. Eines der Produkte ist dabei sehr nützlich! Dazu werden in eine Kupferchloridlösung zwei Kohlenstoffelektroden getaucht und eine Spannung von 5V angelegt.

Versuchsaufbau Elektrolyse
Versuchsaufbau Elektrolyse
Beobachtung
Schlussfolgerung
An der Anode entsteht ein dunkelbrauner Feststoff Kathode: Kupferabscheidung
An der Kathode entsteht ein stechend riechendes Gas Anode: Chlorentwicklung

Detailzeichnung:

Bearbeiten
Detailzeichnung der Elektrolyse
Detailzeichnung der Elektrolyse
Die Elektrolyse ist eine chemische Reaktion, die erst durch das Zufügen von elektrischen Strom möglich wird. Dabei „liefert“ die Spannungsquelle Elektronen zum Minuspol, wodurch Kationen entladen werden. Es entsteht elementares Kupfer . Am Pluspol „saugt“ die Spannungsquelle Elektronen von den Anionen ab, so dass auch diese entladen werden. Es bildet sich Chlor (die Spannungsquelle kann als „Elektronenpumpe“gesehen werden).

- Pol (Kathode):

Bearbeiten
  1.Schritt: Cl- [Cl] + e-
  2. Schritt: 2 [Cl] Cl2  
    2Cl- Cl2 + 2e-  

+ Pol (Anode):

Bearbeiten
  Cu2+ + 2e- Cu

Gesamtreaktionsgleichung:

Bearbeiten
  2Cl- + Cu2+ Cl2 + Cu
Kathode: Kupferionen (= Kationen) + Elektronen   Kupferatome  
Anode: Chloridionen (= Anionen)       Chloratome + Elektronen
          ( Chlormoleküle)    

Aufgaben:

Bearbeiten

Stelle die Reaktionsgleichung einer Magnesiumchlorid-Lösung Elektrolyse auf. Welche Produkte entstehen?

Übung - Verkupfern eine Schlüssels

Bearbeiten

Als Verkupfern bezeichnet man das Überziehen metallischer Gegenstände mit Kupfer. Der Vorgang ist eine Sonderform der Elektrolyse. Allerdings steht nicht die Zersetzung des Salzes im Vordergrund, sondern vielmehr das entstehende Produkt Kupfer. Bei geeigneten Bedingungen legt es sich auf dem metallischen Gegenstand, der als Minuspol dient ab.

Versuchsbeschreibung
Elektrolyse einer Kupferionenlösung:

Versuchsaufbau Leitfähigkeit von Lösungen
Versuchsaufbau Leitfähigkeit von Lösungen

Problem: Wie kann das Kupfer gut am Feststoff haften? Möglichst dichter und geschlossener Kupferüberzug Reinigung

Beobachtung
An der Anode entsteht ein dunkelbrauner Feststoff An der Kathode entsteht ein stechend riechendes Gas.

Schlussfolgerung
Am Schlüssel setzt sich schon nach kurzer Zeit ein rotbrauner Belag ab, der Anfangs schwarz erscheint. Es handelt sich um Kupfer. (siehe auch vorheriger Versuch)

Gesamtreaktionsgleichung:   2Cl- + Cu2+ Cl2 + Cu

Zusatzinformationen:

Bearbeiten

Andere Möglichkeiten zum  Verkupfern:

 Elektrolyse

Max von Laue - Versuch

Bearbeiten
Wikipedia hat einen Artikel zum Thema:


Max von Laue studierte an der Universität Straßburg Physik und beschäftigte sich nach seinem Umzug nach Göttingen schwerpunktmäßig mit der Optik. 1903 promovierte er bei Max Planck in Berlin. Nach seiner Habilitation 1906 beschäftigte er sich mit der Relativitätstheorie Albert Einsteins und entwickelte 1907 mit optischen Experimenten wichtige Beweise für die Richtigkeit des Einsteinschen Additionstheorems. 1909 kam er als Privatdozent an das Institut für theoretische Physik der Universität München.

Im Jahr 1912 entdeckte er zusammen mit Friedrich und Knipping die Beugung von Röntgenstrahlen an Kristallen. Damit waren sowohl der Wellencharakter der Röntgenstrahlung als auch die Gitterstruktur der Kristalle nachgewiesen. Für seine Arbeit erhielt von Laue 1914 den Nobelpreis für Physik.

Der Laue - Versuch:

Bearbeiten
Ergebnis des Laue-Versuches

Versuchsbeschreibung
Ein Salzkristall wird mit Röntgenstrahlung bestrahlt. Dahinter befindet sich eine Fotoplatte, welche für Röntgenstrahlen empfindlich ist[3] .

Beobachtung
Laue bemerkte charakteristische Schwärzungen. Er untersuchte daraufhin verschiedene Salze und stelle fest, dass es scheinbar drei Typen von Mustern gab, die besonders häufig auftreten.

Schlussfolgerung
Im festen Zustand liegt in Salzen ein Ionengitter vor. Dabei sind Ionen im richtigen stöchiometrischen Verhältnis so „gepackt“, dass jedes Kation die gleiche Anzahl an Anionen als Nachbarn hat (und umgekehrt). Ein positives Ion hat also nur negative Ionen als Nachbar und umgekehrt. Die Anzahl ist dabei immer gleich! Diese Zahl nannte er Koordinationszahl. Die Koordinationszahl gibt die Anzahl der unmittelbaren Nachbarn an, welche für die jeweiligen Salze typisch ist!

Es gibt dabei v.a. drei wichtige Typen, die besonders häufig auftreten. Laue benannte sie nach den Salzen, wo er dies zuerst bemerkte:
NaCl: Natriumchlorid-Typ KZ = 6 (also 6 Nachbarn pro Ion) bildet einen Oktaeder
CsCl: Cäsiumchlorid-Typ KZ = 8 (also 8 Nachbarn pro Ion) bildet einen Würfel
ZnS : Zinksulfid-Typ KZ = 4 (also nur 4 Nachbarn pro Ion) bildet einen Tetraede

Aber warum ist die Summenformel dann NaCl?

Wenn aber jedes Ion so viele Nachbarn hat, warum ist dann die Summenformel nicht NaxClx? Das wäre doch viel zu chaotisch und kompliziert! Die Summenformel gibt also nur das Verhältnis der Ionen an.

Bsp.: Na+Cl- : Verhältnis Na+ : Cl- = 1:1

Räumliche Struktur des Natriumchlorids

Bearbeiten
Das Natriumchlorid-Ionengitter Natriumchlorid hat die Koordinationszahl 6
Räumliche Darstellung des Natriumchlorids im Gittermodell
Räumliche Darstellung des Natriumchlorids im Gittermodell
Veraqnschaulichung der Koordinaten
Veraqnschaulichung der Koordinaten

Die Koordinationszahl

Bearbeiten

Die Anordnung der Ionen im Kristall ist regelmäßig. Betrachtet man z.B. einen Natriumchloridkristall, sieht man:

  • jedes Na+-Ion ist von 6 Cl--Ionen umgeben
  • jedes Cl--Ion ist von 6 Na+-Ionen umgeben

Man sagt daher die Koordinationszahl (KZ) beim Kochsalz ist 6

Die Koordinationszahl ist die Anzahl der direkten Nachbarn in einem regelmäßig aufgebauten Verband.

Wovon hängt die Koordinationszahl ab?

  1. Je größer ein Anion ist, desto mehr Kationen könnten darum angeordnet werden.
  2. Die Formel gibt an wie sich die Zahlen von Anionen und Kationen in der Verbindung zueinander verhalten.
Die Formel einer Ionenverbindung ist immer eine Verhältnisformel, keine Molekülformel!!!

Beispiele für Ionenradien:

Bearbeiten
Ion (Na+) (Cs+) (Zn2+)   (Cl-) (S2-)
Radius 97 pm 169 pm 74 pm   181 pm 184 pm
Koordinationszahl Anordnung der Ionen Gittertyp
< 0,42 4 tetraedrisch ZnS-Typ
0,42 bis 0,73 6 oktaedrisch NaCl-Typ
> 0,73 8 würfelförmig CsCl-Typ

Aufgabe:

Bearbeiten

Ermittle die Koordinationszahlen den und Gittertyp von Lithiumbromid.
r = 68 pm, r = 195 pm

Wovon hängt der Ionenradius ab?

a) Von Periode zu Periode nehmen die Ionenradien zu, da mit jeder Periode auch eine neue Elektronenwolke vorhanden ist
  der Radius nimmt zu
b) Von der Anzahl an Valenzelektronen. Es gilt folgende Regel: Kationen sind kleiner als die Anionen der selben Periode.
Erklärung: Von Element zu Element nimmt innerhalb einer Periode die Kernladungszahl (= Protonenzahl) zu. Das heißt, die Außenelektronen werden immer stärker durch mehr und mehr Protonen angezogen. Der Radius nimmt leicht ab.
Von der Größe der Ionen ist im Übrigen auch die Anzahl an Nachbarn im Salzkristall abhängig (=Koordinationszahl). Sie bestimmt u.a. auch die Form der Salzkristalle.
  • bei Kationen, also positiv geladene Ionen, ist der Ionenradius kleiner als der Atomradius. Je größer die positive Ladung ist, desto kleiner wird der Ionenradius.
  • bei Anionen, also negativ geladene Ionen, ist der Ionenradius größer als der Atomradius. Je größer die negative Ladung ist, desto größer wird der Ionenradius.

Grobe Regel: Bei der Kationenbildung nimmt der Ionenradius ab, bei der Anionenbildung hingegen nur unmerklich zu

Zusatzinformationen:

Bearbeiten
Wikipedia hat einen Artikel zum Thema:


Ionenbindung und das Ionengitter

Bearbeiten

Definition:

Bearbeiten

Eine Ionenbindung ist die Verbindung von unterschiedlich geladenen Ionen. Die Ionen ziehen sich dabei durch elektrostatische Anziehung an und „halten“ so zusammen. Diese Ionenbindung kann z.B. durch einen Elektronenübergang von einem Atom auf ein Zweites entstehen (z.B. bei der Salzbildung). Dabei werden jeweils soviel Elektronen aufgenommen (bzw. abgegeben), bis beide Partner Edelgaskonfiguration erreichen.

  • Ein Ion kann aus einem oder mehreren Atomen bestehen (Na+ , Cl-, NO3-).
  • Metallatome bilden Kationen. Diese sind positiv geladen und kleiner als das ursprüngliche Atom, da in ihrer Elektronenwolke ein Elektron fehlt. Nichtmetallatome bilden Anionen. Sie sind negativ geladen und ungefähr so groß wie das ursprüngliche Atom, da sich die Anzahl ihrer Elektronenwolken nicht ändert.
Räumliche Darstellung des Natriumchlorids im Gittermodell (vereinfacht)
Räumliche Darstellung des Natriumchlorids im Gittermodell (vereinfacht)
  • Chlor: Chlorid (Cl-)
  • Schwefel: Sulfid (S2-)
  • Eine aus Ionen aufgebaute Verbindung besteht aus zahlreichen Anionen und Kationen, die im festen Zustand zu einem Ionengitter (Kristall) geordnet sind. Die elektrostatische Anziehung hält den Kristall zusammen.
  • Die Koordinationszahl gibt die Zahl der unmittelbaren Nachbarn an. (Bsp. NaCl: KZ = 6)
  • Die Formel (z.B.: NaCl) gibt das einfachste ganzzahlige Verhältnis zwischen den Ionen an. Insgesamt ist der Kristall elektrisch neutral.
  • Bei der Bildung eines Ionengitters wird Gitterenergie frei. Das Ionengitter ist demnach ein von den Ionen „angestrebter“ Zustand. (Man glaubt es kaum, aber der geordnete Zustand ist der, der am wenigsten Energie benötigt!)
  • Zum Auflösen eines Ionengitters wird demzufolge wieder die Gitterenergie benötigt, die bei der Bildung frei wurde. (Um also „Unordnung“ zu erzeugen, muss Energie „rein gesteckt“ werden.)
  • Beim Schmelzen von Salzen werden die Ionen des Ionengitters voneinander getrennt. Durch Zufügen von Energie erhöht sich dabei die Eigenschwingung der Ionen. Überschreitet die Energie den Schmelzpunkt (= Betrag der Gitterenergie), ist die Schwingung so groß, dass das Ionengitter „zusammenbricht“.

Da die Ionen sich durch die Ionenladung gegenseitig zusammenhalten, muss sehr viel Energie aufgebracht werden, um das Ionengitter zu zerstören.
Bei Salzen ist der Schmelzpunkt sehr hoch

Bei der Bildung eines Ions aus einem Atom wird Energie benötigt:

Bearbeiten

Ionisierungsenergie (ΔHI): Energie, die benötigt wird, um aus einer Elektronenwolke eines Atoms ein Elektron zu entfernen.

Elektronenaffinität (ΔHEA): Energie, die benötigt/frei wird, um einem Atom ein Elektron zuzufügen.

Das Coulomb’sche Gesetz

Bearbeiten

Das Coulombsche Gesetz wurde von dem französischen Physiker Charles Augustin de Coulomb (1736-1806) im Jahre 1785 aufgestellt.

    Ec =
  Ec ~

Ec = Coulomb’sche Energie (hier: Energie, die bei der Gitterbildung frei wird)
d = Abstand zw. Ionen - Mittelpunkten (= Kernen)
(eine Konstante, unveränderbar!)

Allgemein beschreibt das Gesetz die elektrostatische Kraft zwischen zwei Punktladungen. Es besagt, dass diese Kraft proportional zum Produkt dieser beiden Ladungen und umgekehrt proportional zum Quadrat ihres Abstandes ist. Zwei Ladungen mit gleichem Vorzeichen (gleichnamige) stoßen sich ab, solche mit verschiedenem Vorzeichen (ungleichnamige) ziehen sich an. Das coulombsche Gesetz bildet die Basis der Elektrostatik.

Annahmen:

Bearbeiten
  1. Wenn die Ladungen zweier Ionen das gleiche Vorzeichen haben, ist Ec positiv es ist Energie notwendig, um die Ionen zusammen zu bringen.
  2. Ist eine Ionenladung aber negativ, ist das Vorzeichen negativ es wird Energie frei
  3. Ist der Kation - Anion Abstand sehr klein, wird besonders viel Energie frei. Je geringer der Abstand zwischen den Ionen ist, desto mehr Energie muss aufgebracht werden, um das Ionengitter aufzubrechen (Schmelzen).

Wovon hängt die Anziehung also ab?

Von der Anzahl der Ladungen und von den Ionenradien.

Berechne, bei welchem Salz die Gitterenergie größer ist: Li+Cl- oder Ag+Cl-

d LiCl = (60+181) = 241 * 10-12 m dAgCl = (115+181) = 296 * 10-12 m

die Energie wird bei AgCl proportional höher sein

Dies ist die Erklärung für die Tatsache, dass AgCl ist ein schwerlösliches Salz ist

Wärme und Kälteeffekte beim Lösen von Salzen

Bearbeiten

Versuchsbeschreibung
Lösen verschiedener Salze mit gleichzeitiger Temperaturmessung (vorher Wassertemperatur messen!). Nach Lösen des Salzes wird die Temperatur erneut gemessen.

Salze: T   ΔT  
KCl            -7K
CuSO4   -2K
 CaCl2 * 6H2O    1K
CaCl2   -7K
NaCl   0K
CaO   +2K

Schlussfolgerung
Alle Feststoffe die aus Ionen aufgebaut sind, werden als Salz bezeichnet. Im festen Zustand bildet das Salz ein Ionengitter. Wird ein Salz in Wasser gelöst, gehen die Ionen vom unbeweglichen Gitterzustand in den Freibeweglichen über.

Die geschieht in zwei Schritten:

Bearbeiten
  1. Aufbrechen des Ionengitters und freisetzen der Ionen. (Energie wir benötigt, da Ladungen getrennt (auseinander gezogen) werden müssen).
  2. An die freien Ionen lagern sich aufgrund elektrostatischer Anziehung Wassermoleküle an (Hydratisierung oder Hydrathüllenbildung). Dabei wird Energie freigesetzt.
Wortglichung für das Lösen von Salzen
Wortglichung für das Lösen von Salzen

„Bananenmodell“ der Hydratisierung:

Bearbeiten

Ist der absolute Wert der Hydratationsenergie größer als der der Gitterenergie, kommt es zu einem Temperaturanstieg. Im anderen Fall löst sich das Salz unter Abkühlung.

Graphische Veranschaulichung das Lösen von Salzen
Graphische Veranschaulichung das Lösen von Salzen

Fällungsreaktionen - Ionen umhüllen sich mit Wasser

Bearbeiten

Was ist ein schwerlösliches Salz?

Bearbeiten

1.

Lösen von Na2SO4 und BaCl2 im selben Gefäß
Lösen von Na2SO4 und BaCl2 im selben Gefäß
Salze lösen sich meist gut in Wasser. Treffen aber zwei Ionen zusammen, deren Kombination ein schwer lösliches Salz ergibt, so fällt dieses auch sofort als Feststoff aus (erkennbar am Niederschlag Trübung). Man nennt dies eine Fällungsreaktion.
Sie ist auch als Nachweis für Ionen geeignet. In Reaktionsgleichungen wird das Ausfallen einen Stoffes mit einem oder einem (s) für solid hinter der Summenformel des Stoffs gekennzeichnet.

Durch das Verwenden von spezifischen Fällungsreaktionen ist es möglich, einzelne Bestandteile einer Lösung zu identifizieren, also nachzuweisen. Dies ist sehr wichtig zum Nachweis von geringen Ionen Konzentrationen im Analyselabor. Eine mögliche Anwendung ist die Untersuchung von Trinkwasser oder Lebensmitteln. Fällungsreaktionen können auch zum Ausfällen von störenden Ionen verwendet werden, z.B. bei der Reinigung von Klärwasser in der chemischen Stufe der Kläranlage verwendet werden.

Transfer: Erkläre mit einer Zeichnung, welcher Feststoff als schwerlösliches Salz ausfällt, wenn man die Salze AgNO3 und NaCl zusammen in einer Lösung mit Wasser auflöst.

Der Lösungsvorgang bei schwerlöslichen Salzen ist grundsätzlich endotherm. Die zum Lösen benötigte Gitterenergie ist sehr hoch. Die Hydratisierungsenergie reicht hier nicht aus um das Ionengitter vollständig aufzulösen. Das Salz löst sich nicht auf

Fällungsreaktionen als chemische Nachweise

Bearbeiten

Versuchsbeschreibung
Kippe die folgenden Lösungen zusammen und untersuche das Ergebnis

Beobachtung
In einigen Fällen kommt es zu einer Trübung

  KCl K2SO4 AgNO3 CuSO4 BaCl2 K2CrO4 KNO3
KCl x - AgCl - - - -
K2SO4   x - BaSO4 - -
AgNO3     x AgCl Ag2(CrO4) -
CuSO4       x BaSO4 Cu(CrO4) -
BaCl2         x Ba(CrO4) (gelb) -
K2CrO4           x -
KNO3             x

Schlussfolgerung
Am ehesten kann man Fällungen mit einer Analogie erklären: Die 10 Klasse fährt im engen Bus ins Schwimmbad. Im Bus sind alle eng zusammen (=Feststoff), im Wasser bewegen sich die Schüler dann wild hin und her. Treffen aber zwei „Verliebte“ aufeinander, so lassen sie sich nicht mehr los und sind untrennbar verbunden ;-)

Nachweis von...

Bearbeiten

Chlorid-Ionen

Bearbeiten

Zugabe von Ag+ - Ionen Lösung (z.B. AgNO3)

Na+(aq) + Cl-(aq) + Ag+(aq) + NO3-(aq) Ag+Cl-(s) + Na+(aq) + NO3-(aq)
    Nachweis   (Test NaNO3 ist löslich)
  weißer Niederschlag    
  • Die tiefgestellten Indizes stehen für:
  • (aq)= in Wasser gelöst
  • (s)= solid = Feststoff
  • (l)=liquid =Flüssigkeit
  • (g)= gasförmig
  • Der Pfeil bedeutet, dass dieser Feststoff ausfällt, d.h. sich am Boden abscheidet.
  • Vereinfachte Gleichung: Ag+(aq) + Cl-(aq) Ag+Cl-(s)
  • Info: Auch Br--Ionen und I--Ionen bilden mit Silber schwerlösliche Niederschläge.
  • Zum Nachweis von Silberionen verfährt man entsprechend umgekehrt

Sulfat-Ionen

Bearbeiten

Zugabe von Ba2+ Ionenlösung (mit etwas Salzsäure Auflösen von anderen Niederschlägen)

Ba2+(aq) + SO42-(aq) Ba2+SO42-(s)
    Nachweis
  weißer Niederschlag

Fe3+-Ionen

Bearbeiten

Zugabe von Thiocyanatlösung

Fe3+(aq) + 3 SCN-(aq) Fe3+SCN-3
    Nachweis
  tief rot

Cu2+-Ionen

Bearbeiten

Zugabe von Ammoniakwasser

Bei Zugabe von Ammoniakwasser zu Cu2+-haltigen Lösungen entsteht eine tiefblaue Farbe
  (Kupfertetraminkomplex)

CO32--Ionen

Bearbeiten

Zugabe von einer Säure


2 HCl(l) + CO32-(aq) H2CO3 + 2 Cl-
   
    CO2 + H2
    Nachweis
  Lösung schäumt stark auf CO2

Schlussfolgerung
Ionen sind für den Menschen in der Regel unsichtbar. Um sie nachzuweisen muss man sie zu einer „sichtbaren“ Form reagieren lassen. Bei vielen Nachweisreaktionen entstehen schwerlösliche oder farbige Verbindungen (Fällungs- oder Farbreaktionen) oder Gase mit auffälligenEigenschaften.

Übung: Wozu dienen Fällungsreaktionen? - Wasseruntersuchungen

Bearbeiten

Problemstellung:

Bearbeiten

Ein Labor hat 4 Wasserproben (3 Mineralwasser und ein destilliertes Wasser) auf ihren Ionengehalt untersucht und leider zur Befestigung der Etiketten einen schlechten Klebstoff verwendet. Die Schilder sind abgefallen. Ist jetzt noch möglich, die einzelnen Wasserproben den Laborergebnissen zuzuordnen?

Versuch: Analyse dreier Mineralwasser

Bearbeiten

Drei Flaschen Mineralwasser und destilliertes Wasser werden in gleichen Bechergläsern präsentiert. Die Schüler sollen dann eine Zuordnung zu den Originalquellen versuchen. Versuch: Nachweis von Chlorid und Sulfationen in:

  1. Mineralwasser 1
  2. Mineralwasser 2
  3. Mineralwasser 3
  4. Dest. Wasser

Beobachtung
Unterschiedliche Trübungen, je nach Ionengehalt. Zuordnung möglich

Schlussfolgerung & Auswertung:

Bearbeiten
  • Welche zwei schwerlöslichen Salze haben wir gebildet?
  • Kann man mit unseren Erfahrungen jetzt den Chloridgehalt von Leitungswasser bestimmen?
  • Warum kann die ursprünglich „mindergiftige“ Bariumionenlösung unbeschadet in den Ausguss? - Bariumsulfat ist ein Mineral (Barit) ( sehr schlechte Löslichkeit, noch nicht mal in HCl )
  • Einige Wasser tragen die Aufschrift: Enteisent. Wie ist es möglich ein Ion gezielt zu entfernen.
  • Warum entfernt man nicht auf dem selben Wege Chloridionen aus dem Wasser?
  • Beim Erhitzen von Wasser werden (durch komplizierte Reaktionen) Carbonate freigesetzt. Diese reagieren mit Calciumionen zu einem schwerlöslichen Salz. Wie heißt es und was für Folgen hat dies?

Kalk - ein besonderes Salz

Bearbeiten

nach:

Wikipedia hat einen Artikel zum Thema:


Kalziumkarbonat ist eine chemische Verbindung mit der Summenformel CaCO3. In der Natur bildet dieses Mineral drei Calciumcarbonat-Gesteine, die zwar chemisch identisch sind, sich aber sonst in mancherlei Hinsicht unterscheiden.

  • Kreide ist ein feines, mikrokristallines Sedimentgestein, das durch Ablagerung der Schalen von fossilen Kleinlebewesen (wie Coccolithen und Kammerlinge) entstanden ist. Kreide wird an zahlreichen Standorten entlang des europäischen Kreidegürtels abgebaut, von Großbritannien über Frankreich bis hin zur Insel Rügen in Norddeutschland.
  • Kalkstein ist ebenfalls biologischen Ursprungs, aber stärker verfestigt als Kreide. Die eigentlichen Gesteinsbildner waren Schnecken und Muscheln sowie gesteinsbildende Korallen und Schwämme. Die Größe der Karbonatkristalle liegt zwischen derjenigen von Kreide und Marmor. Große Kalkstein-Vorkommen befinden sich im französischen Orgon sowie in Burgberg (Deutschland). Kalkgesteine finden sich auch auf der Schwäbischen und Fränkischen Alb, sowie in den Kalkalpen.
  • Marmor ist ein grobkristallines, metamorphes Gestein, das entsteht, wenn Kreide oder Kalkstein unter dem Einfluss hoher Temperaturen und Drücke umkristallisiert werden. Große Marmor-Vorkommen finden sich in Nordamerika und in Europa beispielsweise in Österreich, Norwegen oder im italienischen Carrara, der Heimat des reinweißen "Statuario", aus dem Michelangelo seine Skulpturen schuf.

Obgleich mehr als vier Prozent der Erdkruste aus Kalziumkarbonat-Gesteinen besteht, sind nur wenige Lagerstätten für die Gewinnung von Füllstoffen geeignet. Reinheit, Weißgrad, Mächtigkeit und Homogenität sind nur einige der Parameter, die Geologen bei der Prospektion von Kalziumkarbonat-Vorkommen in aller Welt erfassen.

Der technische Kalkkreislauf

Bearbeiten

Durch technische Vorgänge kann Calciumcarbonat (Kalk) in Kalkmörtel umgewandelt werden. Bei der Verwendung härtet dieser durch die Reaktion mit Kohlenstoffdioxid (aus der Luft) wieder zu Calciumcarbonat aus. Dabei bilden sich lange Kalknadeln, welche die Baustoffe (wie Ziegel) gut miteinander verbinden).

Versuchsbeschreibung
a) Marmor/ Calciumcarbonat wird in Wasser gegeben. Es erfolgt ein Indikatortest!
b) Dann wird er in der Brennerflamme mehrere Minuten gebrannt und anschließend in Wasser gegeben. Führe einen Indikatortest durch!

Beobachtung
a) Keine Änderung der Indikatorfarbe
b) Es ist eine Lauge entstanden

Schlussfolgerung
Durch das Brennen ist Calciumoxid entstanden, welches mit Wasser Kalkwasser bildet. Kalkwasser ist eine Lauge - Vorsicht!

Keislauf des Kalkbrennens
Keislauf des Kalkbrennens

a) Gebrannter Kalk

Bearbeiten

Ab einer Temperatur von etwa 800 °C wird Kalkstein zersetzt. CO2 wird ausgetrieben und es entsteht der gebrannte Kalk:

Calciumcarbonat + E Calciumoxid + Kohlenstoffdioxid

CaCO3 + E CaO + CO2

Vorsicht: Gebrannter (ungelöschter) Kalk und gelöschter Kalk sind stark ätzend! Kontakt mit den Augen kann zur Erblindung führen! Gewöhnlicher Kalk ist dagegen harmlos.

b) Gelöschter Kalk

Bearbeiten

Wird gebrannter Kalk mit Wasser versetzt, entsteht unter Volumenvergrößerung und starker Wärmeentwicklung gelöschter Kalk, das zum Kalken von Wänden und als Zusatz zu Kalkmörtel verwendet wird.

Calciumoxid + Kohlenstoffdioxid Calciumhydroxid + E

CaO + CO2 Ca(OH)2 + E

c) Abbinden des Mörtel: An der Luft bindet gelöschter Kalk mit Hilfe von Kohlenstoffdioxid wieder zu Calciumcarbonat ab, womit sich der Kreislauf schließt. Der Vorgang des Abbindens kann durch den geringen CO2 Gehlat der Luft jahrelang dauern. In einigen alten dicken Maurn alter Burgen ist der Mörtel teilweise heute noch nicht abgebunden

Calciumhydroxid + Kohlenstoffdioxid Calciumcarbonat + Wasser + E Ca(OH)2 + CO2 CaCO3 + H2O + E

Zusatzinformationen:

Bearbeiten
Wikipedia hat einen Artikel zum Thema:
Wikipedia hat einen Artikel zum Thema:

Zement (lat. caementum: Bruchstein, Baustein) verbindet ähnlich wie Kalkmörtel Baustoffe wie z.B. Ziegelsteine. Zement ist besonders fest und hält sehr lange. Obwohl er nicht völlig unanfällig gegen Verwitterung ist, so halten Bauten mit Zement und Beton (einem Produkt aus Zement) sehr lange.

Zur Herstellung wird ein Gemisch aus Ton und Kalk fein gemahlen (manchmal nimmt man Mergel, welches ein natürliches Gemisch beider Stoffe ist). Das Gemisch wird in einen Drehrohofen bei 1450°C erhitzt/ gebrannt. Es entsteht dabei der Zement.

Kommt Zement mit Wasser in Berührung, bindet er ab. Dabei reagieren Calcium-Aluminium-Silikate, die beim Brennen entstanden sind mit Wasser. Es entstehen kleinste Kristalle, die sich ineinander „verfilzen“. Da das Abbinden mit Wasser funktioniert, kann er sogar unter Wasser abbinden -was besonders beim Brückenbau in Flüssen von großer Bedeutung ist.

Diese Verfestigung tritt auch noch ein, wenn die 6-8 fache Menge Sand und Kies zugefügt werden. Eine solche Mischung bezeichnet man als Beton. (Stahlbeton mit Stahlstäben).

Herstellung von Zement und Beton
Herstellung von Zement und Beton

Zusatzinformationen:

Bearbeiten
Wikipedia hat einen Artikel zum Thema:

Wiederholungsfragen Ionen

Bearbeiten

Ionen & Salze

Bearbeiten
  Cl Br O SO3
Li        
Ba        
Mg        
Al        
  1. Bestimme die Ionenladung der Ionen in der Tabelle rechts und erstelle die Summenformel, welche sie im entsprechenden Salzkristall haben:
  2. Nenne typische Eigenschaften von Salzen!
  3. Was ist ein Ion?
  4. Nenne verschiedene Möglichkeiten Natriumchlorid zu bilden. Schlage jeweils einen geeigneten Aufbau vor.
  5. Nenne die Regeln, nach denen man die Ionenladung eines Ions bestimmen kann.
  6. Beschreibe den Versuch zur Ionenwanderung. Welche Beobachtung kann man bei Kupfersalzen, bei Kaliumpermanganat und bei Kaliumdichromat machen. Erkläre diese Beobachtungen!
  7. Beschreibe den Versuchsaufbau der Elektrolyse von Kupferchlorid. Welche Beobachtungen kann man machen? Erkläre diese.
  8. Betrachte die Bildung von Natriumchlorid unter energetischem Aspekt im Detail. Welche Einzelschritte laufen ab?
  9. Sind diese Endo- oder Exotherm? Versuche dies jeweils anhand einer Modellvorstellung zu erklären.
  10. Warum ist die Reaktion insgesamt Exotherm?
  11. Definiere die Begriffe Ionisierungsenergie und Elektroaffinitätsenergie.
  12. Warum hat Natriumchlorid die Summenformel NaCl?
  13. Was versteht man unter dem Begriff „Koordinationszahl“?
  14. Wovon hängt die Koordinationszahl ab?
  15. Nenne und erkläre die Coulomb’sche Formel!
  16. Erkläre den Vorgang des Schmelzens. Wovon ist der Schmelzpunkt abhängig?
  17. Warum leiten Ionen den elektrischen Strom? Beschreibe einen entsprechenden Versuch!
  18. Welche Ionen sind in Natriumchlorid zu finden? Welche in Berylliumsulfat?
  19. Ionen entstehen durch...
  20. Ionen unterschieden sich von Atomen durch...
  21. Beschreibe den Aufbau der Salze. Nenne Möglichkeiten sie chemisch zu bilden.
  22. Welche Eigenschaften haben Ionen?
  23. Wie bestimmt man die Ladung eines Säurerestes? Welche Ladung hat der Säurerest der Chromsäure H2Cr2O7 und der Kieselsäure H2SiO3?
  24. Welche Voraussetzungen müssen gegeben sein, damit Ionen den Strom leiten?
  25. Stelle die folgende Reaktionsgleichungen auf: (Tipp: Bilde Ionen aus der Schwefelsäure)
    a) Schwefelsäure + Wasser
    b) Schwefelsäure + Magnesium
  26. Bestimme die Ionenladung der folgenden Ionen und erstelle die Summenformel, welche sie im entsprechenden Salzkristall haben.
  27. Wozu dienen Fällungsreaktionen? Nenne Beispiele!
  28. Erkläre das allgemeine Prinzip eines Nachweises. Nenne mindestens 6 chemische Nachweise!
  29. Erkläre den Begriff Ionenbindung. Wodurch werden die Ionen zusammengehalten?
  30. Warum hat Natriumchlorid die Summenformel NaCl? Wäre Na1000Cl1000 nicht passender?
  31. Erkläre den Vorgang des Schmelzens eines Salzes. Wovon ist der Schmelzpunkt abhängig?

Übungstest zum Thema „Salze und Ionen“ II

Bearbeiten

Ionenwanderung: in welche Richtung „laufen“ folgende Ionen:    (1P + 2P Begr. 3P)

Wohin wandern die Ionen?
Wohin wandern die Ionen?

Begründung:

Berechnung die molare Masse von Na und Na+ aus den Massen von Protonen, Neutronen und Elektronen)

Nach einer Messung der Atom- und Ionenradien von Natrium und Chlor hat man versehentlich die Daten vertauscht.
Kannst Du sie wieder zuordnen?

(Hinweis: Atomradius bzw. Ionenradius = Entfernung von der Atomkernmitte bis zur 95% - „Grenze“ der Elektronenwolke) (Zuordnung je 0,5P; Begründung 4P 6P)

Messung 1) 186 pm sowie 97 pm
a) Natriumatom: .........
b) Natriumion: .........

Messung 2) 180 pm sowie 181 pm
c) Chloratom: .........
d) Chloridion: .........

Begründe Deine Meinung:

Versuchsaufbau Leitfähigkeit von Lösungen
Versuchsaufbau Leitfähigkeit von Lösungen

Summe:

Energiebilanz der Salzbildung

Bearbeiten

Die Salzbildung ist immer exotherm. Eine besonders exotherme Reaktion ist die Bildung von Natriumchlorid:

Versuchsbeschreibung
Reaktion von Natrium und Chlor.

Beobachtung
Es entsteht ein weißer Feststoff. Die Reaktion ist stark exotherm.

Schlussfolgerung
Es ist Natriumchlorid entstanden. Große Energiemengen wurden frei.

  Na Na+ + e-    
  Cl2 + 2 e- 2 Cl-

2 Na + Cl2 2 NaCl + E

Teilschritte der NaCl - Bildung

Bearbeiten

Die Bildung von NaCl läuft in mehreren Schritten ab. Um die Heftigkeit der Reaktion besser zu verstehen, zerlegen wir sie mal in Einzelschritte:

Welche Teilschritte müssen ablaufen, damit Natrium und Chlor zu Natriumchlorid reagieren?

1a) Na Na+

Bearbeiten
(1) Sublimation:   (festes) Natrium(s) wird zu (gasförmigem) Natrium(g).
    Dazu wird Energie benötigt
Sublimationsenergie ist endotherm >0
(2) Ionisierung:   Natrium(g) wird unter Elektronenabgabe zum Na+-Ion
    Dazu wird Energie benötigt
Ionisierungsenergie ist endotherm >0

1b) ½ Cl2 Cl-

Bearbeiten
(1) Dissoziation:   Chlor wird in zwei Atome gespalten (Cl2 Cl + Cl)
    Dazu wird Energie benötigt
Dissoziationsenergie ist endotherm >0
(2) Elektronenaffinität:   Das Chloratom wird unter Elektronenaufnahme zum Chloridion
    Dabei wird Energie frei
Elektronenaffinitätenergie ist exotherm <0

2) Gitterbildung

Bearbeiten
Die Vereinigung der gasförmigen Ionen zum Salzkristall ist stark exotherm! <0
Energien, die bei der Bildung von NaCl frei werden
Energien, die bei der Bildung von NaCl frei werden

Die Verbindung der Ionen zu einem stabilen Verband/ Gitter setzt eine hohe Gitterenergie frei. Die freiwerdende Gitterenergie beruht auf der starken Anziehungskraft zwischen den entgegengesetzt geladenen Ionen. Die Triebkraft der Salzbildung ist also hohe freiwerdende Gitterenergie nicht das Erreichen des Edelgaszustandes[4] .

Den Zusammenhang kann man sich durch folgende Anschauung verdeutlichen. Um zwei Magneten zu trennen, benötigt man Energie. Fügt man sie wieder zusammen, wird genau diese Energie wieder frei.

Vorzeichen der beteiligten Energien:

Bearbeiten
Sublimation:   Endotherm, da ein fester Zusammenhalt gelöste werden muss
Ionisierung:   Endotherm, da dem Natriumatom ein Elektron „genommen“ wird
   
(Ionisierungsenergie: Energie, die zum Ablösen eines Elektrons benötigt wird)
Dissoziation:   Endotherm, da die beiden Atome des Moleküls „getrennt“ werden
Elektronenaufnahme:   Exotherm, da Elektronen zugefügt werden.
    Ist eigentlich logisch, denn wenn die Ionisierung endotherm ist, dann muss der gegenteilige Prozess exotherm sein!
   
(Die Elektronenaffinität ist die Energie, die bei der Aufnahme eines e- frei wird)

Gesamtbildungsenergie

Bearbeiten
  Na(s) Na(g)   ΔHs =
  Na(g) Na+ + e-   ΔI =
  ½ Cl2 Cl   ΔHB =
  Cl + e- Cl-   ΔHEA =
  Na+ + Cl- Na+Cl-   ΔHG =

Na + ½ Cl2 Na+Cl-(s)   ΔHR =

Berechnung der Bildungsenergie von NaCl:

Bearbeiten
ΔEBildung = ΔESubl + ΔEIonisierung + ½ ΔEDissoziation + ΔEElektronenaffinität + ΔEGitter
Das Erreichen der Edelgaskonfiguration kann somit nicht der Grund für die exotherm verlaufende Reaktion von Natrium und Chlor zum stabilen Natriumchlorid sein.
Vielmehr ist es das Zusammentreten der Ionen zu einem energiearmen, stabilen Gitter unter Freisetzung eines hohen Betrages an Gitterenergie. Die Edelgasregel ist somit ein geeignetes Hilfsmittel bei der Aufstellung der an der Salzbildung beteiligten Ionen, begründet jedoch nicht die „Triebkraft“ der Salzbildung.

Größe der Gitterenergie

Bearbeiten

Die Gitterenergie ist umso grösser, je kleiner die Ionen und je höher deren Ladung ist.

Die Bildung von Zinksulfid in Teilschritten

Bearbeiten

Die Bildung von Atomen

Bearbeiten
Zn (fest, Atomverband) Zn (gasförmig) Sublimationsenthalpie (> 0)
S (fest, Atomverband) S (gasförmig) Sublimationsenthalpie (> 0)

[Wiederholung: Dissoziationsenthalpie Cl2 Cl]

Die Bildung von Ionen

Bearbeiten
Zn   Zn2+ + 2 e- Ionisierungsenergie (< 0)
S + 2 e- S2-   Elektronenaffinität (> 0)

Die Bildung des Ionengitters

Bearbeiten
Zn2+ + S2- Zn2+S2- Gitterenergie (<< 0!)

  1. Schüler stoßen von selbst darauf, dass es nur ein Proton ist!
  2. D.h. in Wasser wird nicht genügend Energie aufgebracht, das Ionengitter zu „zerstören“. Das Salz löst sich nicht (nur in sehr geringen Mengen), solange nicht mehr Energie zugeführt wird.
  3. Auch wenn Menschen die Röntgenstrahlen nicht sehen können, so ist die Photoplatte dafür doch sensibel. Röntgenstrahlen schwärzen die Stellen, auf die sie treffen (denn es ist ja erstmal ein Negativ!). Nach der Entwicklung sind diese Stellen dann hell (siehe auch Abbildung)
  4. Die Edelgasregel ist allerdings ein geeignetes Hilfsmittel bei der Aufstellung der Ionen die an der Salzbildung beteiligt sind.

Chemisches Rechnen (Stöchiometrie)

Bearbeiten

Die Masse von Atomen und Molekülen

Bearbeiten

Kannst Du Dich noch an das Gesetz der vielfachen Massenverhältnisse erinnern? Wenn nicht, wiederhole kurz das entsprechende Kapitel.

Was sagen die beiden Formeln aus?
FeS (Eisensulfid)     : 1 Atom Eisen hat mit einem Atom Schwefel reagiert; also besteht das Molekül aus einem Eisen-Atom und
einem Schwefel-Atom.
FeS2 (Eisendisulfid) : 1 Atom Eisen hat mit zwei Atomen Schwefel reagiert; also besteht das Molekül aus einem Eisen-Atom und
zwei Schwefel-Atomen.
Der Index gibt das Zahlenverhältnis der Atome in der Formel zueinander an. Die Masse steht immer im Verhältnis zur Anzahl der Atome, da diese nicht teilbar sind! → In 7 g Fe sind genauso viele Atome wie in 4 g Schwefel.

Da in der Natur aber nun mal nur sehr selten einzelne Atome vorkommen, sondern in der Regel sehr viele auf einem Haufen, benötigt man zum praktischen Umgang mit Atomen ein neues Hilfsmittel. Nämlich

A) Die Zahl von Avogadro:

Bearbeiten

Der Chemiker Avogadro[1] benötigte eine Zahl, um große Mengen von Atomen beschreiben zu können und um schließlich damit auch „vernünftig“ rechnen zu können.

Er legte fest:

{Definition|1 mol eines Stoffs entspricht genau 6,022•1023 Atomen (=602 200 000 000 000 000 000 000 Atomen[2]) }}

Bezieht man diese Zahl auf eine bestimme Anzahl an Atomen, spricht man auch von der Stoffmenge „n“. Denn oft ist es nötig zu wissen, wie viele Teilchen in einer Stoffportion sind. Aber die Teilchenmengen sind zum Abzählen viel zu groß.

1 mol ist die Stoffportion, in der 6,022 · 1023 Teilchen enthalten sind. Die Stoffmenge wird mit dem Buchstaben „n“ als Größe angegeben. Ihre Einheit ist [mol].

Zusatzinfos

Bearbeiten

 Stoffmenge  Avogadro

Wie wird die Avogadro-Zahl berechnet? Wie wir wissen, wird die Atommasse in „units“ angegeben. Das hilft, auszurechnen, wie viel Atome in 12 g Kohlenstoff enthalten sind.

gegeben: 1u entspricht 1/12 C-Atom 1 C-Atom entspricht 12u

 

gesucht: n(C)

Lösung:

Aufgaben:

Bearbeiten
  1. Wie viele Moleküle sind in 1,8 mol Wasserstoff enthalten?
  2. Wie viel mol Wasserstoff entsprechen 1 Billion Moleküle

B) Die Atommasse:

Bearbeiten

Als Chemiker will man natürlich dann auch wissen, was denn jetzt eigentlich so ein Atom wiegt.

z. B.: ein Cu-Blech wiegt 63,546g.
  Eine Messung ergibt, es enthält genau Atome (=1 mol)

Wie viel wiegt jetzt ein Atom?

Diese Zahl ist natürlich absolut unhandlich und viel zu klein, um damit zu rechnen. Wir machen es wie der Juwelier: Wir führen eine eigene Masseneinheit für Atome ein. Die Chemiker haben lange gerätselt, wie sie diese neue Einheit nennen können und benannten sie schließlich mit dem englischen Wort für Einheit „unit“.

Die Einheit der Atommasse ist „unit“.

Im PSE sind die Massen der Atome in units (u) angegeben.

Während Dalton noch alle Massen im PSE auf das Gas Wasserstoff bezog, bezieht man heute alle Massen der Elemente auf den Kohlenstoff. Er ist fest und lässt sich leicht wiegen. Es wurde auf 12u festgesetzt.

Wie viel g sind jetzt ein u?

C) Die molare Masse

Bearbeiten

Sicher hast Du Dich nun schon gefragt, woher Chemiker überhaupt wissen, wie viele Atome z. B. in einem Stück Kohle enthalten sind?[3] Vielleicht hilft Dir ein Vergleich, um auf die Lösung zu kommen:

Wie kann man bestimmen, wie viele (gleiche) Centmünzen in einer Streichholzschachtel sind, ohne diese zu öffnen oder die Cent einzeln abzuzählen?

Richtig, man kann sie wiegen! Wenn Du die Masse einer Münze kennst, kannst Du leicht die Anzahl in der Streichholzschachtel durch Division bestimmen:

Anzahl Münzen = Masse aller Münzen / Masse einer Münze

Zusammenhang zwischen Masse und (Stoff-)Menge:

Bearbeiten

Wenn 1 Cent 2g wiegt und die Schachtel mit allen Centmünzen 18g wiegt, dann sind 9 Münzen in der Schachtel.

X = Anzahl an Münzen

= 9 Centmünzen

Beziehen wir das nun auf die Massen von Atomen:

Bearbeiten

Man hat also 12 g Kohlenstoff, (z. B. ein kleines Stück Kohle). Man kennt die Masse und möchte wissen, wie viele Atome es sind.

M = molare Masse (=Umrechnungsfaktor zwischen Masse und Stoffmenge[4])
m = Masse in g
n = Stoffmenge (also Anzahl an Atomen in mol)

m = M · n                   n = m/ M

Der Zahlenwert der molaren Masse kann leicht aus dem PSE abgelesen werden. Er entspricht dem Wert der Atom- (bzw. Molekül-) Masse:

1 mol Kohlenstoff hat die molare Masse 12,001 g C entsprechen 1 mol

1 mol = 6,022•1023 Atome (=602 200 000 000 000 000 000 000 Atome Kohlenstoff sind enthalten!)

Hat man also von einem beliebigen Stoff die Stoffmenge 1 mol, enthält diese immer 6,022 · 10²³ Teilchen. Der Stoffmenge 1 mol eines Elements (in atomarer Form) entspricht also immer die Atommasse dieses Elements in "Gramm" (Molare Masse):

1 mol H-Atome wiegen 1 g (1 H-Atom wiegt 1 u)
1 mol O-Atome wiegen 16 g (1 O-Atom wiegt 16 u)
1 mol Cu-Atome wiegen 63,5 g (1 Cu-Atom wiegt 63,5 u) usw.

Auch für Verbindungen kann die Molare Masse angegeben werden. Sie ergibt sich einfach durch Addieren der Atommassen der Elemente, die in einer Verbindung enthalten sind,

z. B.: Bestimme die relative Molekülmasse von Wasser (von Traubenzucker)

M() = 2 · 1,008u + 16u = 18,016u

M() = 6 M(C) + 12 M(H) + 6 M(O) = =

Zusatzinfos:

Bearbeiten

 Molare Masse  Mol (Stoffmenge)

Aufgaben:

Bearbeiten
  1. Wie groß ist die molare Masse von: C, H, O, H2O, HCl, H3PO4, C8H14?
  2. Du kennst nun die Anzahl an Atomen in einem 12 g schweren Kohlenstoffstückchen, aber wie viele Atome sind in einem doppelt so schweren Kohlestückchen enthalten? Notiere die Zahl ;-)
  3. Wie viel Moleküle sind in 100 g Zucker (C6H12O6) enthalten?
  4. Welche Stoffmenge ist in einer mit Wasser gefüllten Badewanne (200 l) enthalten? (Dichte von Wasser: ρ = )
  5. Befinden sich mehr Atome in 150 g Gold oder in 1 kg Aluminium?

Wiederholung des Kapitels Dichte (v. Klasse 8)

Bearbeiten

Wie kann man zwei Körper unterschiedlicher Form hinsichtlich ihres Gewichtes vergleichen? - gar nicht! Man muss dass Volumen mit in Betracht ziehen, sonst könnte man denken, Kohle sei schwerer als Blei, nur weil man ein großes Stück Kohlenstoff mit einem kleinen Bleiwürfel vergleicht.

Bestimmung der Dichte:

Bearbeiten

Ein Körper (z. B. ein Al-Stückchen) wird gewogen und sein Volumen bestimmt. (Durch Ansteigen von Flüssigkeit in einem Standzylinder.)

Die Dichte (Formelzeichen: ρ (griechisch: rho)), ist das Verhältnis der Masse (m) eines Körpers zu seinem Volumen (V). Die Dichte ist eine Stoffeigenschaft.
ρ = m/V
Die SI-Einheit der Dichte ist . Oft ist die Dichte noch in angegeben.

Durch Wiegen und Verdrängung von Wasser im Messzylinder kann die Dichte dabei leicht bestimmt werden. Es gilt 1l entspricht 1000cm3. Manchmal wird die Dichte auch als spezifisches Gewicht bezeichnet. [5]

Einige Dichten bei Normaldruck in der vorgeschriebenen SI-Einheit, sortiert nach ihrer Größe

Bearbeiten
Stoff Dichte in kg/m3
Iridium 22.650
Osmium 22.610
Platin 21.450
Gold 19.320
Wolfram 19.250
Uran 18.050
Quecksilber 13.595
Rhodium 12.400
Palladium 12.000
Blei 11.340
Silber 10.490
Wismut 9.800
Kupfer 8.950
Nickel 8.900
Konstantan 8.800
Kadmium 8.600
Bronze 8.000
Eisen 7.860
Zinn 7.280
Zink 7.130
Chrom 6.920
Antimon 6.700
Titan 4.500
Kohlenstoff 3.510
Aluminium 2.700
Silizium 2.330
Schwefel 2.070
Phosphor 1.823
Beryllium 1.800
Magnesium 1.733
Meerwasser 1.025
Wasser (bei 3,98 °C) 1.000 (1000 kg/m3 = 1 kg/l oder 1 g/cm3 = 1 g/ml)
Eis (bei 0 °C) 917,0 (0,917 g/cm3)
Alkohol 790 (0,790 g/ml)
Benzin 680
Kalium 680

Zusatzinformationen

Bearbeiten

 Dichte

Umfangreiche Tabellen unter:

Tabellensammlung Chemie/ Dichte fester Stoffe
Tabellensammlung Chemie/ Dichte flüssiger Stoffe
Tabellensammlung Chemie/ Dichte gasförmiger Stoffe

Aufgaben zum Thema Dichte

Bearbeiten
  1. Kennst du das Märchen „Hans im Glück“, in dem Hans einen Goldklumpen geschenkt bekommen hat, der so groß ist wie sein Kopf (Volumen etwa 4 dm³). Wie schwer war der Goldklumpen eigentlich?
  2. Du vergleichst je 1kg Benzin, Öl und Wasser in Messbecher eingefüllt. Welche Flüssigkeitsmenge ist jeweils enthalten?
  3. Für eine Sporthalle soll ein Betonfundament mit der Fläche 20m • 60m mit der Dicke von 80cm mit Beton ausgegossen werden. Wie groß ist die Masse des erforderlichen Betons? (Dichte Beton = 2000 kg/m³)
  4. Kann man 9 kg Quecksilber in eine 0,7l-Flasche füllen?
  5. Eine Sprudelflasche ist mit 0,75l Wasser gefüllt und hat die Masse 1,40 kg. Welches Volumen hat das Glas der Flasche (Glas hat eine Dichte von ca. 2,5 Kg/dm³)?
  6. Ein Wassertransporter der Feuerwehr hat ein Fassungsvermögen von 10 000 l
(1l Wasser = 1 000 cm³) . Welches Gewicht hat das Fahrzeug?

Avogadros Gasgesetz und seine Anwendung

Bearbeiten

Der italienische Graf Amedeo Avogadro (1776-1856) war zugleich Physiker und Chemiker und führte Untersuchungen mit Gasen durch. Ihn beschäftigte vor allem die Frage nach dem Volumen von Gasen. Durch seine Forschungen gelangte er schließlich zu einem erstaunlichen Gesetz:

Satz des Avogadro:

Bearbeiten
Verschiedene Gase haben bei gleichem Druck und gleicher Temperatur das gleiche Volumen und somit die gleiche Anzahl an Molekülen/ Atomen.

Mit diesem Wissen ausgestattet, stellte er weitere Forschungen an und bestimmte nun die (relative) Atommasse von gasförmigen Elementen. Dies hatte wegen der schlechten Verfügbarkeit und der schwierigen Handhabbarkeit vor ihm noch niemand versucht.

Er definierte die so genannte Avogadro-Konstante[6], nach der in einem Mol, die Anzahl von genau 6,0221367 • 1023 Molekülen oder Atomen angibt. Heute spricht man auch von „Stoffmenge“. Avogadros Forschungen waren grundlegend und wichtig, dennoch waren sie zu seiner Zeit damals sehr umstritten. Heute weiß man, dass ein Mol einer Substanz stets dieselbe Anzahl von Teilchen hat, unabhängig davon, ob sie fest, flüssig oder gasförmig vorliegt.

Zusatzinformation

Bearbeiten

 Avogadro

Konsequenzen und Anwendung des Avogadros Gasgesetzes: Die Chlorknallgas-Reaktion

Bearbeiten

1 L Wasserstoffgas [H2] enthält genau so viele Wasserstoffmoleküle, wie 1 L Chlorgas

Gleichnung und Veranschaulichung der Chlorknallgas-Reaktion (Würfel)
Gleichnung und Veranschaulichung der Chlorknallgas-Reaktion (Würfel)


Konsequenzen:

Bearbeiten

Das bedeutet, dass das Massenverhältnis sich durch einfaches Wägen der beiden Gasportionen und Dividieren der erhaltenen Ergebnisse durch den kleineren Massenwert ermitteln lässt:

Ein Chloratom ist also 35mal so schwer wie ein Wasserstoffatom. So kann man die Atommassen relativ zueinander bestimmen:

Auf diesem Wege lassen sich die relativen Atommassen aller verdampfbaren Elemente ermitteln.

Anwendung:

Bearbeiten

Mit „units“ zu rechnen ist im Alltag allerdings nicht immer praktikabel, da nur wenige Menschen dies verstehen. Die gebräuchliche und auch im Laboralltag angewendete Masseneinheit ist nicht das „unit“, sondern das „Gramm“. Ersetzt man also bei den Atommassenangaben die Einheit „unit“ durch „Gramm“, so erhält man von jedem Element eine genaue Stoffmenge (n), die der Chemiker als 1 mol dieses Elements bezeichnet. Die dazugehörige Masse wird als Molare Masse (M) bezeichnet und besitzt die Einheit .

1 mol Chlorwasserstoffgas hat eine Masse von 36,5g

Die Stoffmenge „n“

Bearbeiten

Oft ist es nötig zu wissen, wie viele Teilchen in einer Stoffportion sind. Aber die Teilchenmengen sind zum Abzählen viel zu groß. Wie wir nun wissen, wird die Atommasse in „units“ angegeben.

Wie viel Atome sind in 12 g Kohlenstoff enthalten?

geg. : 1u entspricht 1/12 C-Atom
1 C-Atom entspricht 12u:
ges. :
1 mol ist die Stoffportion in der 6,022 • 10²³ Teilchen enthalten sind.

Die Stoffmenge wird mit dem Buchstaben n als Größe angegeben. Ihre Einheit ist [mol]

Zusatzinfos:

Bearbeiten

 Stoffmenge

Aufgaben:

Bearbeiten
  1. Wie viele Moleküle sind in 1,8 mol Wasserstoff enthalten?
  2. Wie viel mol Wasserstoff entsprechen 1 Billion Moleküle (1012)

Molares Volumen Vm

Bearbeiten

Nun müssen nur noch die Regeln für Gase aufgestellt werden, dann hast Du bereits alles wichtiges gelernt. Bei Gasen gab es ja eine Besonderheit, die Avogadro entdeckt hatte.

Stell Dir vor: Ein Gas nimmt bei 0°C und 1013 hPa ein Volumen von 1,4 l ein. Könnte man die vorhandene Stoffmenge bestimmen, obwohl man nicht weiß welches Gas vorliegt? (Vergleich: zwei gefüllte Luftballons)

Die Frage, die sich stellt:

Gibt es einen Umrechnungsfaktor zwischen Volumen und Stoffmenge? Bedenke: Wenn gleiche Volumen verschiedener Gase unter gleichem Druck und gleicher Temperatur immer die gleiche Anzahl von Teilchen

    enthalten (Gesetz des Avogadro), so besitzt doch die Stoffmenge 1 mol aller Gase unter gleichen Bedingungen immer das     gleiche Volumen, oder?
→ Bei gleichem Volumen ist unabhängig vom Gas immer die gleiche Stoffmenge vorhanden.

Nur welche Stoffmenge ist dies? es gilt:

Veines Gases ~ n
V = n * VM[7]

Im Falle l gilt:

Das molare Volumen ist ein Umrechnungsfaktor zwischen Stoffmenge und Volumen. Für Gase[8] hat es bei Normalbedingungen (0°C und 1013 hPa) immer den Wert .

→ Das Molare Volumen VM ist für Gase eine unveränderbare Konstante:

→ 22,4 l eines beliebigen Gases enthalten 1mol Teilchen.

Beachte:

Bearbeiten

der genaue Wert gilt nach Avogadro nur für Normalbedingungen:

Molare Volumen bei Normalbedingungen (0°C (=273K); 1013,25 hPa)

Im Labor sind allerdings höhere Temperaturen üblich, deshalb rechnet man hier oft mit den angepassten Standardbedingungen:

Molare Volumen bei Standardbedingungen (25°C (=298K), 1013,25 hPa)

Für die im Alltag üblicheren Temperaturen (bei gleichem Druck) gilt:

bei 20°C:
bei 25°C:

Zusatzinformationen:

Bearbeiten

 Molares Volumen

Übersicht zum Rechnen mit molaren Größen

Bearbeiten

Symbole und Einheiten

Bearbeiten
Größe Symbol Einheit
Stoffmenge n mol
Masse m g
Atommasse m u
Molare Masse M
Volumen V l
Molares Volumen VM l/mol
Avogadrozahl NA mol-1
Stoffmengenkonzentration c

Zusammenhänge

Bearbeiten
Stoffmenge () und Molare Masse ():
Bearbeiten

Stoffmenge () und molares Volumen ():
Bearbeiten

Stoffmenge () und Konzentration ():
Bearbeiten

Dichte:
Bearbeiten

Molare Masse und molares Volumen:
Bearbeiten

Bzw.

Welche Informationen liefert eine Reaktionsgleichung?

Bearbeiten

Wenn wir jetzt alles aus diesem Kapitel zusammenfassen, dann lässt sich nun viel mehr aus einer Reaktionsgleichung ablesen:

Reaktionsgleichung:   + 2
Qualitative Aussage:   +
Quantitative Aussagen:            
  Mengen: +
    +
  Masse: +
    +
  Volumen (bei Gasen): +
Hinweis:
Bearbeiten

Die Reaktionsenthalpie-Angabe ermöglicht Aussage zu Energiebeteiligung.

Aufgaben:

Bearbeiten

Welche Aussagen treffen folgende Reaktionsgleichungen

Die Reaktion von Magnesium mit Salzsäure

Bearbeiten

Versuchsbeschreibung

In einem Reagenzglas mit seitlichem Auslassrohr bzw. einem mit durchbohrtem Stopfen werden 0,100kg Mg gefüllt und mit ca. 5cm HCl

    überschichtet. Das Reagenzglas wird sofort verschlossen und das Gas (vorsichtig) mit einem Kolbenprober aufgefangen. Die Gasmenge wird

    bestimmt und anschließend berechnet, ob man das komplette Gas aufgefangen hat.

Versuchaufbau der Gasbildungsermittlung bei der Reaktion von Magnesium und Salzsäure
Versuchaufbau der Gasbildungsermittlung bei der Reaktion von Magnesium und Salzsäure

Beobachtung
Das Gemisch wird warm, ein Gas bildet sich, es entstehen ...ml Gas

Schlussfolgerung
Magnesium reagiert unter Wärmebildung mit Salzsäure. Die entstehende Wärme erwärmt die Flüssigkeit.

Magnesium + Salzsäure Magnesiumchlorid + Wasserstoff + E

Mg + 2HCl MgCl2 + H2 + E

Berechnung: Wie viel ml Wasserstoff müssten theoretisch entstehen?

gesucht: V(H2) = ?

gegeben: die Berechnung mit V = Vm · n ist nicht möglich, da n nicht gegeben ist.

Aus den Aussagen der Reaktionsgleichung folgt aber, dass die Stoffmengen der Ausgangsstoffe und die Stoffmengen der Produkte miteinander im angegebenen Verhältnis stehen. Das heißt:

  1 mol Mg + 2 mol HCl 1 mol MgCl2 + 1 mol H2
bzw. n mol Mg + 2n mol HCl n mol MgCl2 + n mol H2

Mit anderen Worten, wenn man die Stoffmenge von Mg kennt, dann weiß man auch die Stoffmenge des entstehenden H2.

m(Mg) = 0,100g M(Mg)= 24,305g/mol n(Mg) = gesucht = n(H2)    n= m/M

Dieser Wert wird nun in die erste Gleichung eingesetzt und man erhält: V = Vm · n = · 0,0041mol = 0,0922l (= 92,2ml) H2 entstehen tatsächlich


  1. Lorenzo Romano Amedeo Carlo Avogadro (1778 - 1856) studierte zunächst Jura, er stammte aus einer Juristenfamilie. 1796 wurde er Doktor des kanonischen Rechts. Seit 1800 studierte er Mathematik und Physik, was seinen Neigungen eher entsprach. 1809 wurde er Professor für Naturphilosophie am Liceo Vercelli in Turin. Hier erarbeitete er seine Molekularhypothese.
  2. Das entspricht 6 Milliarden · 1Milliarde · 10000
  3. Kleines Gedankenexperiment: Wenn alle Menschen der Erde gleichzeitig die Atome von nur einem mol Kohlenstoff zählen würden und pro Sekunde 4 Teilchen zählten, so würden sie ca. 1 Million Jahre brauchen!
  4. entspricht der Masse eines Centstücks im oberen Bsp.
  5. Die Dichte sollte aber nicht mit dem spezifischen Gewicht verwechselt werden; dieses ist zwar proportional zur Dichte, unterscheidet sich aber in einem Punkt: Die Dichte ist das Verhältnis Masse zu Volumen und das spezifische Gewicht das Verhältnis Gewichtskraft zu Volumen. Masse und Gewicht sind unterschiedliche physikalische Größen, werden aber gerne verwechselt, weil das Gewicht in der veralteten Krafteinheit kp annähernd den gleichen Zahlenwert hatte.
  6. Die Avogadro-Konstante wird in Gleichungen als NA angegeben, manchmal auch als L (Loschmidt-Zahl)
  7. molare Volumen in
  8. bei Flüssigkeiten ist der Wert stoffspezifisch

Die Atombindung (auch Elektronenpaarbindung oder kovalente Bindung)

Bearbeiten

Wiederholung der Grundlagen

Bearbeiten

Erinnerst Du Dich an die Eigenschaften und Besonderheiten von Säuren und Laugen? Hier noch mal eine kurze Wiederholung, wenn Du Dich nicht mehr erinnerst, dann lese doch noch mal das Kapitel Säuren und Laugen.

  • Säuren und Laugen ätzen
  • sie werden durch Indikatoren für uns erkenntlich gemacht.
  • meist verwendet man Universalindikator. Er zeigt bei Säuren die Farbe rot, bei neutralen Lösungen grün und bei Laugen blau.
  • Säuren greifen v.a. unedle Metalle an, Laugen greifen v.a. organische Substanzen an.
  • Natronlauge und Kalilauge liegen als Feststoff vor und müssen vor dem Gebrauch erst aufgelöst werden.
  • Säuren und Laugen sind „Gegenspieler“, die sich bei gleicher Konzentration in ihrer Wirkung aufheben. Diesen Vorgang nennt man Neutralisation.
  • Säuren enthalten in ihrer Formel alle Wasserstoffionen (=Protonen), Laugen sind wässrige Hydroxidlösungen (enthalten (OH))
Die wichtigsten Säuren und ihre Säurereste
  Säure   Säurerest
HF Fluorwasserstoffsäure
F-
Fluorid
HCl Chlorwasserstoffsäure
Cl-
Clorid
HBr Bromwasserstoffsäure
Br-
Bromid
HI Iodwasserstoffsäure
I-
Iodid
H2S Schwefelwasserstoff(säure)
S2-
Sulfid
       
HNO3 Salpetersäure
(NO3)-
Nitrat
H2SO4 Schwefelsäure
(SO4)2-
Sulfat
H2CO3 Kohlensäure
(CO3)2-
Carbonat
H3PO4 Phosphorsäure
(PO4)3-
Phosphat
       
HNO2 Salpetrigesäure
(NO2)-
Nitrit
H2SO3 Schwefeligesäure
(SO3)2-
Sulfit
H3PO3 Phosphorigesäure
(PO3)3-
Phosphit
Die wichtigsten Laugen
  Lauge
NaOH Natronlauge
KOH Kalilauge
Ca(OH)2 Calciumlauge

(=Kalkwasser)

Laugen sind wässrige Hydroxidlösungen

Weitere anorganische Säuren

Bearbeiten
Säure      Säurerest     Säurerest
Kieselsäure   H2SiO3 H+ + HSiO3   H+ + SiO32−
        Hydrogensilikat     Silikat
Arsensäure   H3AsO4 3H+ + (AsO4)3-    
        Arsenat    
    +I        
Hypochlorige Säure (=Chlor(I)-säure)   HClO H+ + (ClO)    
        Hypochlorit    
    +III        
Chlorige Säure (=Chlor(III)-säure)   HClO2 H+ +(ClO2)    
        Chlorit    
    +V        
Chlorsäure (=Chlor(V)-säure)   HClO3 H+ +(ClO3)
        Chlorat    
    +VII        
Perchlorsäure (=Chlor(VII)-säure)   HClO4 H+ + (ClO4)
        Perchlorat    

Organische Säuren

Bearbeiten

Organische Säuren kommen in der Natur als Produkt von Tieren oder Pflanzen vor. Sie unterscheiden sich in ihrem Aufbau, da sie nur aus Kohlenstoff-, Wasserstoff- und Sauerstoffatomen bestehen. Ihre Wirkung ist meist etwas schwächer. Einige werden sogar als Lebensmittel eingesetzt. Ihre Formeln sind oft komplizierter:

Typische Säuren sind:

Säure Formel Säurerest
Essigsäure C2H4O2 Acetat
Zitronensäure C6O7H8 Citrat
Ameisensäure CH2O2 Formiat
Oxalsäure C2H2O4 Oxalat
Äpfelsäure C4H6O5 Malat
Ascorbinsäure (=Vit C) C6H8O6 Ascorbat
Bernsteinsäure C4H6O4 Succinate
Acetylsalicylsäure (=Aspirin) C9H8O4 Acetyl-Salicylat

Formeln von einigen ausgewählten organischen Säuren

Bearbeiten

(Achtung: freie Elektronenpaare fehlen!)

Monocarbonsäuren: Ameisensäure, Essigsäure

Strukturformel der Ameisensäure
Strukturformel der Essigsäure

Dicarbonsäuren: Oxalsäure, Bernsteinsäure

Strukturformel der Oxsalsäure
Strukturformel der Bernsteinsäure

Hydroxycarbonsäuren: Äpfelsäure, Zitronensäure

Strukturformel der Äpfelsäure
Strukturformel der Zitronensäure

Zur Erinnerung: Der sechseckige Ring steht für eine zyklische Kohlenstoffverbindung mit der Formel C6H6 (Benzol/Benzen)

verschiedene Strukturformeln des Benzols/Benzens

Säuren mit aromatischen Ring: Acetylsalicylsäure, Ascorbinsäure

Strukturformel der Acetylsalicylsäure
Keilstrichformel der Ascorbinsäure

Darstellung von Chlorwasserstoff

Bearbeiten

Material: Gasentwicklungsapparatur, Thermometer, Leitfähigkeitsmessung

V1: Konz. H2SO4 wird aus einem Tropftrichter auf feuchtes NaCl getropft.

V2: Das entstehende Produkt wird über einen Schlauch über eine Glaswanne gefüllt mit Wasser geleitet. Die Stromstärke und der Säuregrad werden gemessen

Versuchsaufbau
Versuchsaufbau
B1 S1
Es bildet sich ein Gas HCl ist ein Gas! Säuren können in allen Aggregatzuständen vorkommen
das Gefäß wird heiß Bei der Bildung von HCl wird viel Energie frei


H2SO4 + NaCl → HCl + Na2SO4 + E
B2 S2
Das Gas löst sich im Wasser HCl löst sich ausgesprochen gut in Wasser[1]. Es findet eine Reaktion statt
Universalindikator färbt sich rot es hat sich eine Säure gebildet
die Temperatur steigt es liegt eine exotherme Reaktion vor
die Leitfähigkeit steigt es bilden sich Ionen - Ursache muss eine hetero-lytische (=ungleiche) Spaltung des HCl in Ionen sein.

Wichtig: Wie kann man feststellen, welche Ionen in der Glasschale enthalten sind?

Man gibt Silbernitratlösung zu. Die Zugabe von AgNO3 zeigt eine weiße Trübung.

es sind Chloridionen enthalten, es bildet sich das schwerlösliche Salz Silberchlorid.

HCl + H2O → Cl + ?

Welcher weiterer Stoff kann entstanden sein?

Die Protolyse

Bearbeiten

Die Auflösung der Frage, welcher Stoff bei der Reaktion von HCl mit entsteht ist nicht so einfach, da ein neues, Dir bis jetzt unbekanntes Teilchen entsteht.

Was wissen wir aus der Vorstunde?

Cl - entsteht H-Cl musste dazu gespalten worden sein:

Spalltung von HCl
Spalltung von HCl

Kurzzeitig entsteht also ein H+ und ein Elektronenpaarschreibweise von einem Cl-Ion

Aber wie kommt es zu dieser ungleichen (=heterolytischen) Spaltung des HCl?

HCl und H2O sind Dipole. Das HCl - Wasserstoffatom wird also auch leicht vom H2O - Sauerstoffatom angezogen. Es kann den Bindungspartner wechseln.

Bindungspartnerwechsel vom HCl zu H3O+
Bindungspartnerwechsel vom HCl zu H3O+

Der Sauerstoff des Wasser ist partial negativ geladen. Er übt so eine Anziehungskraft auf das Wasserstoffatom des HCl aus.

Man könnte vereinfacht sagen, das Sauerstoffatom des Wassers flirtet mit dem H (der HCl), welches in Versuchung geführt wird und seinen Partner verlässt.

Die Konsequenz ist, dass HCl heterolytisch getrennt wird. Dabei wird dem elektronegativeren Atom das Elektronenpaar zugeteilt.

Es entstehen H+ und Cl -. Auch das kann man sich vereinfacht vorstellen: bei der Trennung von H und Cl bleibt das gemeinsame Eigentum (also die Elektronen) bei dem Verlassenen.

Zusammenfassend kann man sagen, dass bei dieser Reaktion ein H+ von einem Partner auf einen anderen übertragen wurde. Da H+ keine Elektronen hat und nur ein Proton (und kein Neutron), wird es unter Chemikern auch als Proton bezeichnet!
Als Protolyse bezeichnet man den Übergang eines Protons (von einem Molekül auf ein anderes)

HCl ist also erst in Verbindung mit Wasser eine Säure. Säure ist demnach nicht eine Stoffeigenschaft, sondern erst das Ergebnis einer Reaktion, bei der Oxoniumionen[2] entstehen..

Aufgabe:

Erstelle Gleichungen für die Protolyse von 8 Säuren!

Zweistufige Protolyse von Schwefelsäure

Bearbeiten
Wikipedia hat einen Artikel zum Thema:
Wikipedia hat einen Artikel zum Thema:
Wikipedia hat einen Artikel zum Thema:

Versuchsbeschreibung
Die Leitfähigkeit von Schwefelsäure und Wasser wird einzeln gemessen. Nun wird vorsichtig etwas Wasser zur Schwefelsäure zugefügt. Die Leitfähigkeit wird gemessen und anschließend ein Diagramm erstellt.

Beobachtung
Die Leitfähigkeit nimmt zu. Dies geschieht in 2 Stufen

S: Erst durch die Wasserzugabe findet eine Protolyse statt. Sie geschieht in zwei Schritten, wie man am Leitfähigkeitsdiagramm sehen kann. Es bilden sich nacheinander die Ionen Hydrogensulfat (HSO4) und Sulfat (SO42−).

Impuls: Schwefelsäure reagiert also in zwei Schritten zu Hydrogensulfat und Sulfat. Beide Säurereste bilden als Feststoff entsprechende Salze (z.B. NaHSO4 und Na2SO4)

Mit Phosphorsäure kann man sogar drei Salze bilden:

  • NaH2PO4
  • Na2HPO4
  • Na3PO4

Die Autoprotolyse des Wassers

Bearbeiten

Wasser reagiert mit sich selbst in geringem Maße zu Hydroxid- und Oxoniumionen.

H2O + H2O → H3O+ + OH

Allerdings ist in neutralem Wasser die Konzentration der Oxoniumionen nur 0,000.0001 mol/l [10-7 mol/l]. Dies erklärt auch die (wenn auch geringe) Leitfähigkeit von salzfreiem, destilliertem Wasser (siehe dazu Versuch der Ionenleitfähigkeit)

Ist Ammoniak (NH3) eine Lauge?

Bearbeiten

Eine Messung des pH-Wertes von Ammoniak ergibt einen pH-Wert von ca. 13-14. Dies entspricht dem pH-Wert einer konzentrierten Lauge. Laugen sind wässrige Lösungen von Hydroxidionen (OH). Diese sind aber in Ammoniak nicht vorhanden!

Schema der OH−-Bildung
Schema der OH-Bildung

Ist NH3 eine Lauge, wenn es wie eine Lauge Indikatorpapier blau färbt, aber kein Hydroxid enthält?

Schaut man sich die Reaktion mit Wasser an, kommt man auf die Lösung:

NH3 + H2O → NH4+ + OH +E

NH3 bildet mit Wasser Hydroxidionen. Es reagiert somit alkalisch. Es ist keine Lauge, reagiert aber wie eine. Aus diesem Grunde wurde eine neue Definition notwendig. Da der Begriff Lauge aber schon vergeben war führten Chemiker den neuen Begriff der Base ein. Basen reagieren alkalisch. Alle Laugen sind auch Basen. Der Begriff Base umfasst aber auch hydroxidfreie Stoffe, wie Ammoniak, die alkalisch reagieren.

Die Definitionen lieferte der dänische Chemiker  Johannes Nicolaus Brønsted (1879 -1947):

Eine Base ist ein Stoff, der Protonen (=H+) aufnimmt, also ein Protonenakzeptor - Eine Säure ist ein Stoff, der Protonen abgibt, also ein Protonendonator

Ist Natronlauge auch eine Base?

Bearbeiten

Die Reaktion von Natronlauge mit Salzsäure ist ja aus den letzten Kapiteln bekannt. Es ist eine Neutralisation:

NaOH + HCl → NaCl + H2O + E

Da es sich bei NaOH und NaCl um Ionen handelt, liegen diese freibeweglich in der Lösung vor:

Na+ + OH + HCl → Na+ + Cl + H2O + E

Wenn man diese Reaktion so betrachtet, sieht man, dass von NaOH eigentlich nur das Hydroxid (=OH ) reagiert hat:

OH + H+ → H2O + E
Natronlauge reagiert mit Wasser, indem es in die freibeweglichen Ionen Na+ und OH zerfällt. Das Hydroxid vereinigt sich dann im folgenden Schritt mit dem Proton, welches aus der HCl stammt. Es ist also ein Protonenakzeptor und somit eine Base. OH- ist die stärkste Base in wässrigen Systemen.

Säure-Base Reaktionen

Bearbeiten
Wikipedia hat einen Artikel zum Thema:
Wikipedia hat einen Artikel zum Thema:
Wikipedia hat einen Artikel zum Thema:
Wikipedia hat einen Artikel zum Thema:

Schaut man sich die Reaktion von Natronlauge mit Salzsäure genauer an und ordnet nun den Stoffen die Begriffe Säure und Base zu, so erlebt man eine Überraschung:

OH + HCl Cl + H2O + E
Base   Säure   Base   Säure    
Bei Säure-Base-Reaktionen wird immer ein Proton übertragen. Es liegt also immer eine Protolyse vor. Des Weiteren sieht man, dass die Base dabei zu einer Säure reagiert und die Säure zu einer Base. Man spricht also immer von einem korrespondierendem Säure-Base-Paar.

z.B.:

OH / H2O

HCl / Cl

Als Faustregel kann man sich dabei merken:

Starke Säuren reagieren zu schwachen Basen, starke Basen zu schwachen Säuren.


Die Neutralisation

Bearbeiten

Erinnere Dich:

  • Durch Neutralisation kann eine Säure durch Lauge unschädlich gemacht werden (und umgekehrt).
  • Die ätzende Wirkung der Säure geht vom Wasserstoff bzw. H3O+ aus
  • Die ätzende Wirkung der Lauge geht vom OH (=Hydroxid) aus

OH muss durch H3O+ unschädlich gemacht werden. Sie bilden H2O. bei einer Neutralisation entstehen immer ein Salz und Wasser.

Neutralisation von Salzsäure mit Natronlauge

Bearbeiten

Versuchsbeschreibung
Zu Natronlauge wird Universalindikator gegeben und dann tropfenweise Salzsäure hinzu gegeben und dabei gut gerührt.

Beobachtung
Bei genügend Zugabe von Lauge verfärbt sich der Indikator. Es entsteht bei gutem experimentellem Geschick eine neutrale Lösung (grüne Farbe des Indikators)

S: In der Natronlauge liegen und -Ionen vor. Hinzu kommen von der Salzsäure und . Je mehr man sich dem Neutralpunkt nähert, desto mehr Moleküle und reagieren zusammen und bilden Wasser.

Neutralisation: +
Gesamtgleichung: NaOH + HCl + () → NaCl + + () + E
Säuren und Basen sind „Gegenspieler“. Sind genauso viele Teilchen der Säure und der Base in der Lösung vorhanden (also gleiche Konzentrationen), heben sie sich gegenseitig in ihrer ätzenden Wirkung auf, d.h. sie sind neutralisiert.

Aufgabe:

  1. Wenn man nicht weiß, wie viele Teilchen der Säure vorhanden sind, kann man sie durch die Anzahl der Teilchen an Base bestimmen. Woher weiß ich, wann genauso viele Teilchen vorliegen?

Zweistufige Neutralisation

Bearbeiten

Versuchsbeschreibung
Titration von Schwefelsäure mit Natronlauge (ganz und halb). Anschließend eindampfen der neutralisierten Lösung und der halbneutralisierten Lösung. Vergleich der beiden Salze nach Aussehen und Eigenschaften.

Beobachtung
Es entstehen zwei Salze, die sich etwas in ihrem Aussehen unterschieden.

S: Nach Zugabe der hälfte der Natronlauge entsteht v.a. Natriumhydrogensulfat (1. Stufe). Nach Zugabe der kompletten Menge an Natronlauge ist Natriumsulfat entstanden (2. Stufe).

1. Stufe: NaOH + H2SO4 NaHSO4 + H2O + E
2. Stufe: NaOH + NaHSO4 Na2SO4 + H2O + E
          Salz + Wasser    

Gesamtgleichung:

2 NaOH + H2SO4 → Na2SO4 + 2 H2O + E

In der 8. bzw. 9. Klasse hast Du gelernt, dass der pH-Wert den Säuregrad angibt. Er wurde Dir als Messgröße mit den Werten 0-14 vorgestellt.  

Substanzen mit einem pH-Wert < 7 bezeichnet man als Säuren
Substanzen mit einem pH-Wert = 7 bezeichnet man als neutral
Substanzen mit einem pH-Wert > 7 bezeichnet man als Basen/ Laugen

Nun weißt Du im Gegensatz zu damals aber schon wesentlich mehr über saure Wirkungen von Salzen und weißt, dass die Oxoniumionen für die saure, ätzende Wirkung einer Säure verantwortlich sind. Genau diese werden auch mit dem pH-Wert gemessen.

Das Besondere an der pH-Wert Skala ist, dass der Unterschied zwischen einem pH-Wert und dem nächsten das 10-fache beträgt.

Das bedeutet, dass z. B. eine Säure mit pH = 2

zehnmal so sauer wie eine Säure mit pH = 3 ist

und hundertfach so sauer ist wie eine pH = 4 ist.

Um dies genau zu verstehen, musst Du allerdings wissen, was mit dem Begriff „Konzentration“ gemeint ist.

A) Die Konzentration einer Lösung

Bearbeiten

Die Anzahl an Teilchen (=Stoffmenge) in einer Lösung wird üblicherweise in mol angegeben. Um sie auf die jeweilige Flüssigkeitsmenge zu beziehen teilt man durch das Volumen:

Zur Wiederholung aus dem Matheunterricht:

Bearbeiten

Logarithmen dienen z.B. dazu, Exponenten auszurechnen.

1000     = lg103 = 3
100     = lg102 = 2
10     = lg101 = 1
1     = lg100 = 0
0,1 = = lg10-1 = -1
0,01 = = lg10-2 = -2
0,001 = = lg10-3 = -3

Wenn also 1l HCl   H3O+ enthält, dann ist die Konzentration

der pH-Wert ist 1

Neutrales Wasser hat, bedingt durch die Autoprotolyse des Wassers, eine H3O+ Konzentration von

pH-Wert = 7

Kann man eigentlich sagen, wie viel mal geringer/ höher die Konzentration an Protonen einer Lösung im Vergleich einer anderen ist?

Ja, denn von pH 1 zu pH 2 ändert sich die Konzentration von . Sie ist also 10 mal geringer. Vergleicht man eine Lösung mit pH-Wert = 10 und eine Lösung mit dem pH-Wert = 7, dann ist demzufolge die Konzentration um den Faktor 1000 höher!
Faustregel: Eine pH-Wertstufe entspricht einer Zunahme/ Verringerung der Konzentration um den Faktor 10

C) Beziehung zwischen dem pH-Wert und dem pOH-Wert

Bearbeiten

Jetzt könnte man meinen, in Laugen wären keine freien Oxoniumionen vorhanden. Das ist ein Irrtum. Es sind nur sehr wenige. In einer starken Natronlauge befinden sich bei pH-Wert 13 nur H3O+.

In der hoch konzentrierten Lauge befinden sich aber sehr viele Hydroxid () Ionen. Es gilt folgende Beziehung:

pH + pOH = 14

wenn also der pH-Wert 13 beträgt sind H3O+ und OH enthalten.

Mit anderen Worten: In neutralem Wasser liegen H3O+ vor.

pH-Wert ist 7 Wasser ist trotz der H3O+ neutral, da die Konzentrationen c und c gleich sind (beide ). Bei höheren Protonenkonzentration ist die Lösung dann sauer. Bei geringeren ist sie alkalisch, da entsprechend die OH Ionen Konzentration zunimmt.

D) Beispiele aus dem täglichen Leben

Bearbeiten

Zusatzinformationen

Konzentrierte Salzsäure HCl hat eine Konzentration von ca. . Daraus ergibt sich folgende Verdünnungsreihe:

1000 ml HCl entspricht 12 mol HCl/l
500 ml HCl + 500 ml H2O entsprechen 6 mol HCl/l
50 ml HCl + 950 ml H2O entsprechen 0,6 mol HCl/l
5 ml HCl + 995 ml H2O entsprechen 0,06 mol HCl/l
2,5 ml HCl + 997,5 ml H2O entsprechen 0,03 mol HCl/l


Säuren und Basen im Alltag

Bearbeiten

Hier einige Beispiele von pH-Werten bei Alltagsstoffen

pH-Wert Beispiel Säuregrad pH-Wert Beispiel Säuregrad

0

  • HCL
  • Magensäure

sehr sauer

8

  • Nordseewasser
  • Seife
  • nasser Zement
  • Waschmittel

 

1

  • Kalkreiniger

 

9

 

schwach alkalisch

2

  • Batteriesäure
  • Zitronensaft
  • Essig

 

10

 

 

3

  • Zitronenlimonade
  • Cola

schwach sauer

11

  • Ammoniak
  • Kernseife
  • Abfluss-frei

 

4

  • Sauerkraut
  • Haut

 

12

 

stark alkalisch

5

  • Shampoo

 

13

 

 

6

  • O-Saft
  • saure Milch

 

14

 

 

7

  • Speichel
  • Leitungswasser
  • Darmmilieu

neutral

15

 

 

Warum ist Milchsäure auf der Haut so wichtig für Menschen?

Bearbeiten

Der Säureschutz der Haut besteht vor allem aus Harnsäure und Milchsäure. Er verhindert das Eindringen und Wachsen von Bakterien, Viren und Pilzen auf der Haut, da diese in der Regel keine Säure mögen und auch nicht dort wachsen können, wo schon viele Milchsäurebakterien wachsen. Häufiges Duschen, oder stark alkalische Seifen „schwächen“ allerdings den Säureschutz.

Wie kommt es zu saurem Regen:

Bearbeiten

Durch Verbrennung fossiler Brennstoffe entstehen Nichtmetalloxidgase wie z.B. Stickoxide, Kohlenstoffdioxid und Schwefeloxide.

z.B.:

2 NO + O2 → 2 NO2 + E
3 NO2 + H2O → 2 H+ NO3 + NO + E
NO + NO2 → 2 HNO2 + E

Diese Oxide reagieren mit Regenwasser zu Säuren:

z.B.:

2 NO2 + H2O → HNO3 + HNO2 + E

Titration einer Lauge mit Schwefelsäure

Bearbeiten

Versuchsbeschreibung
Zu 20ml Barytwasser (kaltgesättigt!) wird verdünnte Schwefelsäure getropft (+Universalindikator). Die Leitfähigkeit wird gemessen. Wenn der Neutralpunkt erreicht ist (Farbumschlag), tropft man weiter hinzu!

Versuchsaufbau einer Titration
Versuchsaufbau einer Titration

Beobachtung
Die Leitfähigkeit der Lösung nimmt erst ab, dann zu.

Beobachtung und graphische Auswertung einer Titration

Schlussfolgerung

1. Warum leitet Bariumhydroxidlösung den e- Strom?
  • In wässriger Lösung zerfällt jedes Molekül Ba(OH)2 in drei Ionen: Ba2+ und 2 OH
Diese transportieren die elektrischen Ladungen.
2. Warum verringert sich die Leitfähigkeit durch Zugabe von H2SO4?
Ba2+(OH)2 + 2H+SO42−→ 2 H2O + Ba2+SO42−
1. Ursache: Am Anfang liegen drei Ionen vor. Durch Zugabe von Schwefelsäure verringert sich die Anzahl auf zwei, da zusätzlich Wasser gebildet wird, welche nicht aus Ionen aufgebaut ist.
2. Ursache: Es bildet sich das schwerlösliche Salz BaSO4. Diese leitet nicht den Strom, da es nicht gelöst vorliegt.
3. Warum ist die Leitfähigkeit am Neutralpunkt minimal?
Es liegen keine freibeweglichen Ionen vor
4. Warum nimmt die Leitfähigkeit dann wieder zu?
Die weitere Zugabe von H2SO4 erhöht die Leitfähigkeit, da dessen Ionen den Strom leiten

2 H+ + SO42− + Ba2+ + 2 OH → 2 H2O + BaSO4

Schlussfolgerung

Es bildet sich das schwerlösliche Salz Bariumsulfat, dadurch sinkt die Leitfähigkeit anfangs. Die Protonen werden neutralisiert. Nach Erreichen des Neutralpunktes steigt die Leitfähigkeit, da nun immer mehr Hydronium und Sulfationen hinzukommen, da verdünnte Schwefelsäure fast vollständig in Ionen zerfallen ist.

Quantitative Neutralisation

Bearbeiten

In der Chemie unterscheidet man zwischen qualitativen Verfahren, bei denen die Stoffe an sich bestimmt werden, die an einer Reaktion teilnehmen, oder die dabei entstehen und quantitativen Verfahren, bei denen die Stoffmenge von bekannten Stoffen bestimmt wird.

Um die quantitative Neutralisation zu verstehen, fragen wir uns, wie viel Natronlauge (Konzentration c = 0,1 mol/L) man zum Neutralisieren von 10ml HCl mit der Konzentration c = 1 mol/L benötigt.

HCl: V = 10ml (=0,01l)   NaOH: V = ?
  c = 1 mol/L     c = 0,1 mol/L
  n = ?     n = ?
 

Die Stoffmenge n ist leicht zu berechnen:

 

Da wir nicht wissen welches Volumen NaOH benötigt wird, kann auch nicht die Stoffmenge berechnet werden!

 
n = c · V
n = 1 mol/L · 0,01 l = 0,01mol

Nützt uns dieses Ergebnis, also die vorhandene Stoffmenge (=Anzahl an Säureteilchen, Oxoniumionen) für HCl, um den Wert der Stoffmenge für Natronlauge zu bestimmen?

Ja sicher, denn bei der Neutralisation werden alle Oxoniumionen durch Hydroxid der Lauge unschädlich gemacht. Es muss also gelten:

Im Neutralpunkt ist die Stoffmenge von Oxoniumionen und Hydroxidionen gleich nHCl = nNaOH

die Stoffmenge an Hydroxid (und somit auch an NaOH) ist auch 0,01mol

VNaOH = =

Damit nun alle Eventualitäten berechnet werden können (also auch z.B., welche Konzentration muss eine Lauge haben, damit genau 100ml verwendet werden), substituieren wir n in der Gleichung durch c · V

nHCl = nNaOH cSäure · VSäure = cLauge · VLauge

Mit dieser Gleichung lassen sich durch Umstellen alle Fälle berechnen!

Titration einer Salzsäure unbekannter Konzentration

Bearbeiten

Versuchsbeschreibung
10 ml Salzsäure werden mit einer bestimmten Menge Natronlauge (c = 0,1 mol/L) neutralisiert.

  c in mol/L V in L
HCl x 0,1
NaOH 0,1 0,1

Im Falle, dass alle Oxoniumionen der HCl mit allen Hydroxid der NaOH reagiert haben, liegen genauso viele Teilchen HCl wie NaOH vor!

nHCl = nNaOH

n = c * V c HCl * V HCl = cNaOH * VNaOH c HCl =

x =

Überprüfe Dein Ergebnis durch eine Messung!

Aufgaben

Bearbeiten
  1. Es sollen 10 mL Salzsäure (c = 0,01 mol/L) mit Kalkwasser neutralisiert werden. (Kalkwasser ist eine wässrige Lösung von Calciumhydroxid)
    a) Stelle die Reaktionsgleichung auf
    b) Bestimme die notwendige Stoffmenge an Calciumhydroxid.
    c) Zur Calciumhydroxid Herstellung liegt Calciumoxid vor. Wie stellt man aus Calciumoxid Calciumhydroxid dar? (Bedenke: Calciumoxid ist ein Metalloxid)
    d) Stelle dazu die Reaktionsgleichung auf. Wie nennt man diesen Vorgang?
    e) Welche Masse an Calciumoxid muss abgewogen werden, damit die notwendige Stoffmenge an Calciumhydroxid vorliegt?
    f) Neutralisiere die Säure indem Du tropfenweise Dein selbst hergestelltes Kalkwasser hinzufügst. Füge einen Indikator zu und beobachte (In welcher Folge ändert sich die Indikatorfärbung?)
  2. Statt Salzsäure werden 10ml Phosphorsäure (c = 0,001 mol/L) verwendet. Berechne die notwendige Menge an CaO!

Zusatzinformationen:

Bearbeiten
Wikipedia hat einen Artikel zum Thema:

,

Wikipedia hat einen Artikel zum Thema:


Musterlösung Aufgabe 1

Bearbeiten
  1. a) Reaktionsgleichung:
    b) Die notwendige Stoffmenge an Calciumhydroxid:
    Wie man sieht entsprechen die Stoffmengen sich nicht. Zum Neutralisieren der beiden OH eines Moleküls Ca(OH)2 braucht man zwei Moleküle HCl:
    Es gilt also:
    Anzahl an vorliegenden Säureteilchen:
    aus (1) und (2) folgt
    Man benötigt zur Neutralisation also 0,00005 mol Ca(OH)2. Diese reagieren mit den vorhandenen 0,0001 mol HCl.
    c) Wie stellt man aus Calciumoxid Calciumhydroxid dar?
    Durch Zugabe von Wasser. Metalloxide und Wasser bilden Laugen!
    d) Welche Masse an Calciumoxid muss abgewogen werden, damit die notwendige Stoffmenge an Calciumhydroxid vorliegt?
    Wir benötigen 0,00005 mol Ca(OH)2
    0,00005 mol CaO + 0,00005 mol H2O → 0,00005 mol Ca(OH)2 +E
    Es müssen 0,0028 g CaO abgewogen werden. Diese werden mit einer beliebigen(!) Menge Wasser aufgelöst und für den Versuch verwendet. Sie neutralisieren genau die vorhandene Menge an HCl.

Zusammenfassung: Säure und Basen-/Laugenbildung

Bearbeiten
Zusammenfassung Säuren und Basenbildung
Zusammenfassung Säuren und Basenbildung

Wichtige Definitionen

Bearbeiten

Arrhenius:

Eine Säure ist...

Eine Lauge ist ...

Brönstedt:

Eine Säure ist...

Eine Base ist...

Eine Protolyse ist...

Das Kennzeichen einer Säure-Base Reaktion ist...

Eine Neutralisation ist...

Die Einführung des Konzeptes „Base“ wurde notwendig, da...

Salze entstehen z.B. durch...

Wiederholungsfragen Säure, Lauge, Base

Bearbeiten
  1. Definiere die Begriffe Säure und Lauge und wiederhole alle Säuren und ihre Säurereste
  2. Was ist ein Indikator? Erkläre, welche positiven Eigenschaften ein Stoff haben muss, um ein Indikator zu sein und nenne dir bekannte Indikatoren.
  3. Wie kann man Chlorwasserstoff im Labor darstellen? Wie Salzsäure?
  4. Was versteht man unter Protolyse? (Autoprotolyse?)
  5. Welcher Zusammenhang besteht zwischen Säuren, der Säurewirkung und Oxoniumionen (bzw. Protonen)?
  6. Definiere Säure, Lauge/ Base nach Arrhenius und Brönsted. Warum hat Brönstedt das System der Lauge erweitert? (Tipp: nenne zuerst 5 Laugen und 15 Basen!)
  7. Warum spricht man bei Säure - Base Reaktionen auch vom „Donor-Akzeptor-Prinzip“
  8. Begründe mit einer Reaktionsgleichung, warum auch NH3 alkalisch wirken kann und OH freisetzt, obwohl es doch kein Hydroxid in der Formel enthält!
  9. Welche Stoffe werden durch Säuren, welche durch Laugen angegriffen?
  10. Was versteht man unter dem „korrespondierenden Säure-Base Paar“?
  11. Was versteht man unter dem pH-Wert? Definiere und erkläre den genauen Zusammenhang zwischen pH-Wert und der Konzentration
  12. Nenne 5 Dinge aus dem tägliche Leben, die eine Säure sind
  13. Mit welcher Formel kannst Du berechnen, wie viel Lauge zu einer bestimmten Menge Säure hinzu gegeben werden muss.
  14. Bestimme die Konzentration einer Lösung, die aus 95ml Wasser und 1mol Salz enthält
  15. Wie viel Wasser muss zu n = 0,121 mol Kochsalz zugegeben werden, damit eine Lösung mit c = 0,05 mol/L entsteht?
  16. Berechne: Es sollen 10ml Salzsäure (c = 0,001 mol/L) mit Kalkwasser neutralisiert. Bestimme die notwendige Stoffmenge an Calciumhydroxid.
  17. Berechne: Es sollen 10 ml Phosphorsäure (c = 0,001 mol/L) neutralisiert werden. Berechne für Kaliumhydroxid und für Kalkwasser.

  1. 507 Liter HCl pro Liter Wasser bei 0°C!
  2. Oxonium wurde früher auch Hydroniumion genannt

Redoxreaktionen als Elektronenübergänge

Bearbeiten

Einleitung

Bearbeiten

In Kapitel Metalle und Redoxreaktionen & Energiediagramm hast du Redoxreaktionen als Sauerstoffaustauschreaktion kennen gelernt. Das ist ein gutes Konzept, um viele chemische Reaktionen zu verstehen. Allerdings benötigen wir für einige komplexere Reaktionen ein erweitertes Konzept.

Als gutes Hilfsmittel haben sich dabei die Oxidationszahlen erwiesen. Sie sind den Wertigkeiten ähnlich und helfen chemische Vorgänge besser zu erkennen. Oft wird erst durch die Bestimmung der Oxidationszahlen einzelner Atome klar, welche chemische Reaktion abläuft. Regeln findest Du im Folgenden.

Zusatzinformationen:

Bearbeiten

 Redoxreaktion

Die Oxidationszahl- eine nützliche Hilfszahl

Bearbeiten
Wikipedia hat einen Artikel zum Thema:
  1. Oxidationszahlen werden über den Elementsymbolen als römische Ziffer notiert.
  2. Elemente haben stets die Oxidationszahl 0, z.B.:
  3. Sauerstoff besitzt in Verbindungen die Oxidationszahl -II, z.B.:
  4. Wasserstoff besitzt in Verbindungen die Oxidationszahl +I, z.B.:
  5. Atome, die Wasserstoff ersetzen erhalten positive Vorzeichen, z.B.:
  6. Atome, die Wasserstoff binden erhalten negative Vorzeichen, z.B.:
  7. Der Betrag der Oxidationszahl ergibt sich aus der Zahl der ersetzten bzw. gebundenen Wasserstoffatome.
  8. Die Summen der Oxidationszahl in Molekülen bzw. Verbindungen ergibt immer 0.
  9. Die Oxidationszahl der Elemente der ersten 3 Hauptgruppen in Verbindungen (!) ist immer positiv und entspricht der Hauptgruppennummer, z.B.:
  10. Bei Ionen entspricht die Oxidationszahl der Ionenladung. Somit haben auch Säurereste die der Ladung entsprechende Oxidationszahl, z.B.:

Aufgaben:

Bearbeiten
  • Bestimme alle Oxidationszahlen:
H2O, MgO, Al2O3, NaCl, N2, NaOH, NH3, SO2, CaO, H2S, SO3, K2O, Na2CO3 , N2O3 , BaO2 , Cl2O4, K2SnO3, H2N2O2, CaB2O4, Cr2O42-, Cr2O72-, AsO43-, MnO4-, HOBr, HBrO2, HBrO3, HBrO4, SCl2, PCl3, BCl3, SnH4, SbCl5, SeF6

Säurereste und Oxidationszahlen

Bearbeiten
  • Die Säure HCl hat den Säurerest Cl- (Chlorid) ; Oxidationszahl ist -I
  • Die Säure H2SO4 hat den Säurerest SO4 2- (Sulfat) ; Oxidationszahl ist -II
  • Die Säure H3PO4 hat den Säurerest PO4 3- (Phosphat) ; Oxidationszahl ist -III
Prinzip: Die Oxidationszahl der Säurereste entspricht der Anzahl an Wasserstoffatomen (mit umgekehrtem Vorzeichen!)

Aufgaben

Bearbeiten

Bestimme alle Oxidationszahlen

Cu, NH4Cl, HBr, KBrO3, H2O, NaCl, H3PO4, Mg, I2, C6H12O6, CO2, HClO4, Al2(SO4)3, H2SO4, BaCl2, AgCl, AgNO3, AlCl3, CaCO3, CaCl2, Br2, Fe2O3, FeCl3, KHSO4, SO2, N2, NaNO3, NH3, KI, HCl

Bestimmung von Oxidationszahlen anhand der Strukturformel

Bearbeiten

Als Beispiel soll die Phosphorsäure (H3PO4) dienen:

  • Zunächst wird die Lewis-Formel aufgezeichnet.
  • Anschließend werden die Elektronen den Atomen nach der Elektronegativität zugeordnet
  • Ausgehend von den Valenzelektronen kann man dann die Oxidationszahl berechnen. Beispiel: Sauerstoff besitzt normalerweise 6 Valenzelektronen (VI. Hauptgruppe). Auf Grund der höheren Elektronegativität des Sauerstoffs sind die Bindungselektronen zwischen dem Sauerstoff und dem Wasserstoff (oder dem Phosphor) dem Sauerstoff zuzuordnen. In der Bilanz erhält der Sauerstoff dadurch zusätzlich zu den 6 vorhandenen zwei weitere Elektronen. Daher ist die Oxidationszahl −II. Der Phosphor steht in der V. Hauptgruppe, hat also normalerweise 5 Valenzelektronen. Da diese alle dem Sauerstoff zugeordnet werden, „fehlen“ ihm fünf Elektronen und er erhält die Oxidationszahl +V.

Oxidation und Reduktion (=Elektronenübertragungsreaktionen)

Bearbeiten

Verbrennungen mit Sauerstoff

Bearbeiten
Versuchsbeschreibung
Beobachtung
Schlussfolgerung

1. Entzünden von Fe-Wolle

  • dunkelgraues Reaktionsprodukt Fe glimmt
  • Wärmeentwicklung

→ Verbrennung von Fe → exotherme Reaktion →Definition ein neuer Stoff ist entstanden

2. Verbrennung von Fe-Wolle in reinem Sauerstoff

  • siehe V1
  • Reaktion ist heftiger

Sauerstoff ist d. Reaktionspartner

3. Entzünden von Al-Pulver

  • Lichtblitz
  • weißes Produkt

Al verbrennt mit Sauerstoff

Bisher: Antoine Laurent de Lavoisier (1743 - 1794, mit der Guillotine hingerichtet):

Die Vereinigung eines Elementes mit Sauerstoff nennt man Oxidation. Das Element wird dabei oxidiert, Sauerstoff ist das Oxidationsmittel. Verbrennungen sind ein Spezialfall der Oxidation, bei der Licht und Wärme freiwerden.

Die Umkehrung der Oxidation wird Reduktion genannt. Sie ist die Abgabe von Sauerstoff

"Verbrennungen" ohne Sauerstoff

Bearbeiten
Versuchsbeschreibung
Beobachtung
Schlussfolgerung

1. Reaktion von Al in Br2

  • Al verbrennt
  • weißer Feststoff als Produkt

exotherme Reaktion ein neuer Stoff ist entstanden

2 Al + 3 Br2 2 AlBr3 + E

Stellt man nun die beiden letzten Reaktionen gegenüber, so sieht man, dass sie recht ähnlich sind. Es entstehen weiße Produkte unter Flammenerscheinung. Ist die zweite Reaktion dann etwa keine Redoxreaktion?

4 Al + 3 O2 2 Al2O3 + E
2 Al + 3 Br2 2 AlBr3 + E

Eine Gemeinsamkeit beider Reaktionen ist das Aluminium. Betrachtet man nun die Valenzelektronen (=Außenelektronen) genauer, so sieht man, dass Al 3 Außenelektronen hat.

In beiden Salzen hat Al eine dreifach positive Ionenladung.

Gemeinsamkeit:   Oxidation: Al Al3+ + 3 e-
Eine Elektronenabgabe wird als Oxidation bezeichnet. Die Elektronen werden vom Oxidationsmittel aufgenommen (neuere, allgemeinere Definition) Elektronen können aber nicht einfach so abgegeben werden. Es ist ein Reaktionspartner notwendig, der dieses Elektronen aufnimmt. Die Elektronenaufnahme wird als Reduktion bezeichnet. Die Elektronen werden vom Reduktionsmittel abgegeben.
Reduktion = Elektronenaufnahme Oxidationsmittel = Stoff der aufnimmt
Oxidation = Elektronenabgabe Reduktionsmittel = Stoff der abgibt
Reduktion und Oxidation laufen immer gleichzeitig ab. Man spricht von Redoxreaktionen.

Bei Redoxreaktionen werden Elektronen von einem Teilchen auf ein anderes übertragen.

Redoxreaktionen sind also Elektronenübertragungsreaktionen.

Schritte zum Erstellen der Reaktionsgleichungen

Bearbeiten

Die folgenden Schritte sollen für Dich ein Rezept darstellen, nach dem Du vorgehen sollst, wenn Du in Zukunft Reaktionsgleichungen für Redoxreaktionen aufstellst. Bei den einfachen Aufgaben auf diesem Zettel kannst Du den Schritt 5 & 6 noch überspringen.

Eine kleine Warnung für alle Schnellrechner:

Überspringst Du später einen Schritt, wird das Ergebnis in der Regel falsch sein!

  1. Unvollständige Gleichung aus dem Experiment aufstellen (Ausgangsstoffe ?? Produkten)
  2. Oxidationszahlen ermitteln
  3. Teilgleichungen aufstellen
  4. Anzahl der jeweils aufgenommenen oder abgegebenen e- ermitteln
  5. Ladungsausgleich:
    1. in alkalischer Lösung mit (OH) (=Hydroxidionen)
    2. in saurer Lösung durch (H3O)+ (=Hydroniumionen)
  6. Stoffbilanz mit Wasser
  7. Elektronenanzahl der Teilgleichungen untereinander durch Multiplikation ausgleichen
  8. Teilgleichungen "addieren" und so die Gesamtgleichung aufstellen. Fast fertig!
  9. Überlegen, ob Energie benötigt oder freigesetzt wird
  10. Überprüfung der Gleichung durch Probe (Dazu zählt man wie oft jedes Element und jede Ladung auf beiden Seiten vorkommt - die Zahlen müssen immer gleich sein!)

Tipps (die Du eigentlich schon aus den letzten Kapiteln kennst):

  1. Nur Wasserstoff, Stickstoff, Sauerstoff und die Elemente der 7. HG kommen als zweiatomiges Element vor: H2, N2, O2, F2, Cl2, Br2, I2 (es gibt also niemals Fe2 oder Al4 als Element!)
  2. Überlege Dir immer gut, ob die Formel, die Du erstellt hast, überhaupt logisch ist und sie Dir bekannt vorkommt. Ein einfaches Zusammenzählen aller Atome ist nämlich nur sehr selten die richtige Lösung: z.B. verbrennt CH4 + O2 nicht zu CH4O2, sondern zu CO2 + H2O (Kohlenstoffdioxid und Wasser!)
Wenn ein Element, ein Ion oder ein Molekül e- AUFnimmt, ist das eine REDuktion. Wenn ein Element, ein Ion oder ein Molekül e- ABgibt, ist es eine Oxidation.

Hinweis: Wenn Du noch nicht soweit bist, komplette Reaktionsgleichungen aufzustellen, dann ist das noch nicht sooo schlimm - schlimm wird es, wenn Du aufgibst ;-)

In dem Fall zumindest alle Oxidationszahlen zuordnen und die Teilgleichungen der Elemente aufstellen, bei denen sich die Oxidationszahlen ändern. (also soweit machen, wie es geht!)

Aufgaben

Bearbeiten

Erstelle die Reaktionsgleichungen der folgenden Reaktionen und entscheide, ob es Redoxreaktionen sind. Bedenke: Redoxreaktionen liegen vor, wenn sich die Oxidationszahlen von Atomen ändern.

  1. Verbrennung von Fe zu Fe2O3
  2. Vereinigung von Aluminium mit Fluor zum Salz
  3. Verbrennung von Methan (CH4)
  4. Mg reagiert mit Brom [Br2] zum entsprechenden Bromid
  5. Bildung von P4O10 aus den Elementen

Zusatzinformationen:

Bearbeiten

 Redoxreaktion

Weitere Beispiele für Redoxreaktionen

Bearbeiten

Redoxreaktionen mit Elementen:

Bearbeiten

Als Schülerversuche Magnesium mit Schwefel und Magnesium mit Sauerstoff umsetzen:

2 Mg + O2 2 MgO + E
Mg + Br2 MgBr2 + E
Mg + S MgS + E


Schlussfolgerung
Das Mg-Atom reagiert bei Redoxreaktionen zum zweifach positiv geladenen Mg2+- Ion

Oxidation:

aus O2, Br2 und S entstehen negativ geladene Anionen.

Reduktion:
Reduktion:
Reduktion:
In allen drei Fällen gibt Magnesium Elektronen ab und wird zum Mg2+-Ion. Diese Elektronenabgabe bezeichnet man als Oxidation. Die Elektronenaufnahme der Reaktionspartner nennt man Reduktion.

Redoxverhalten der Halogene

Bearbeiten
  • Cl2-Wasser + Hexan Hexan färbt sich gelb
  • Br2-Wasser + Hexan Hexan färbt sich braun
  • I2-Wasser + Hexan Hexan färbt sich violett

Redoxverhalten von Wasserstoffperoxid

Bearbeiten
Versuchsbeschreibung
Beobachtung
Schlussfolgerung

H2O2 mit Kartoffel

  • Gasentwicklung, Nachweis durch Glimmspanprobe
  • Bei der Zersetzung von H2O2 entwickelt sich Sauerstoff.
  • Die Kartoffel enthält einen Stoff um Wasserstoffperoxid zu spalten. (Es handelt sich um das Enzym  Katalase)

Grobe Idee in Worten: Wasserstoffperoxid Sauerstoff

Reduktion:

Oxidation:


Redoxreaktion:

In Peroxiden kommt Sauerstoff ausnahmsweise in der Oxidationszahl -I vor.

Redoxreaktion von Kohlenstoff mit Schwefel

Bearbeiten
Versuchsbeschreibung
Beobachtung
Schlussfolgerung

Kohlenstoff in konzentrierter Schwefelsäure kochen

  • Kohlenstoff „verschwindet“
  • Geruch nach Schwefeldioxid
Kohlenstoff hat reagiert
es ist Schwefeldioxid entstanden
konzentrierte Schwefelsäure ist ein Oxidationsmittel

Grobe Idee in Worten: Kohlenststoff + Schwefelsäure Schwefeldioxid

Tipp zum Lösen der Gleichungen: Säuren in Reaktionsgleichungen zu Ionen dissoziieren!

Vereinfachte Redoxgleichung ohne Säure und Wasser

vollständige Redoxreaktion
Aus dem Experiment kann man die Reaktionsprodukte bestimmen. Erst durch die Reaktionsgleichung kann man überprüfen, ob es theoretisch möglich ist, das Produkt zu bilden.

Hausaufgabe: Kupfer + Salpetersäure Kupferoxid + Stickstoffdioxid

Bearbeiten

Eine Kupfermünze reagiert mit Salpetersäure heftig unter Bildung des giftigen Stickstoffdioxids. Stelle die Reaktionsgleichung auf:

  1. Ausgangsstoffe, Endstoffe: Cu + HNO3 NO2 + CuO
  2. Oxidationszahlen bestimmen
  3. Teilgleichungen aufstellen
    Oxidation: Cu CuO
    Reduktion: HNO3 NO2
  4. Elektronenanzahl der jeweils aufgenommenen oder abgegebenen e- ermitteln
    Oxidation: Cu CuO + 2 e-
    Reduktion: HNO3 + e- NO2
  5. Ladungssumme ausgleichen
    Cu CuO + 2 H3O+ 2 e-
    HNO3 + H3O+ + e- NO2
  6. Stoffbilanz mit Wasser
    Cu + 3 H2O CuO + 2 H3O+ 2 e-
    HNO3 + H3O+ + e- NO2 + 2 H2O
  7. . Elektronenzahlen der Teilgleichungen untereinander ausgleichen (Reduktion mal 2)
    Cu + 3 H2O CuO + 2 H3O+ 2 e-
    2 HNO3 + 2 H3O+ + 2e- 2 NO2 + 4 H2O
  8. Teilgleichungen addieren
    Cu + 2 HNO3 CuO + 2 NO2 + H2O
  9. Überlegen, ob Energie benötigt oder freigesetzt wird
    Cu + 2HNO3 CuO + 2NO2 + H2O + E
  10. Probe
    Cu: 1/1
    H: 2/2
    O: 6/6
    N: 2/2

Reduktion von Kaliumdichromat

Versuchsbeschreibung
Beobachtung
Schlussfolgerung

Cr2O72- + Fe2+

  • orange Lösung färbt sich grün

es ist Cr3+ entstanden

Stelle die Reaktionsgleichung auf

Lösung - Kurzform:

1. (Cr2O7)2- 2 Cr3+ ;
  Fe 2+ Fe3+
2.  VI   -II          II              III         III
  (Cr2O7)2- + Fe2+ Cr 3+ + Fe3+
3. ox: Fe2+ Fe3+ + e-
  Cr2O72- + 6e- 2 Cr3+
4. ox: Fe2+ Fe3+ + e-
  Cr2O72- + 6e- 14 H3O+ 2 Cr 3+
5. ox: Fe2+ Fe3+ + e-
  Cr2O72- + 6e- 14 H3O+ 2 Cr 3+ + 21 H2O
6. ox * 6

7. Cr2O72-+ 6 Fe 2+ 14 H3O+ 2 Cr 3+ + 21 H2O + 6 Fe3+ +E

Reaktionen mit Manganionen

Bearbeiten

Mangan ist ein Element, welches in vielen verschiedenen Oxidationsstufen vorkommen kann. Dadurch sind sehr viele Reaktionen möglich. Mit Schwefeltrioxid reagiert es unterschiedlich je nach Säuregrad

Reaktion von Permanganat mit Sulfit:

Bearbeiten
1. In saurem Milieu: 2 MnO4- + 5 SO32- + 6 H3O+ 2 Mn2+ + 5 SO42- + 9 H2O + E
2. In alkalischem Milieu: 2 MnO4- + SO32- + 2 OH- 2 (MnO4)2- + SO42- + H2O + E
3. In neutraler Lösung: 2 MnO4- + 3 SO32- + H2O 2 MnO2 + 3 SO42- + 2 OH- + E

Erklärungen zu 2: Permanganat (VII) zu Manganat (VI)

ox: SO32- + 2 OH- SO42- + H2O + 2e-    
red: MnO4- + e- MnO42-   |* 2

______________________________________________

2 MnO4- + SO32- + 2 OH- 2 MnO42- + SO42- + H2O + E

Damit die Gleichung im Labor möglich ist, müssen die Kationen ergänzt werden, so dass man weiß, welche Salze man verwenden kann

2 KMnO4 + Na2SO3 + 2 KOH 2 K2MnO4 + Na2SO4 + H2O + E

Chlordarstellung aus HCl und Permanganat

Bearbeiten

2 MnO4- + 16H+ + 10Cl- 2 Mn2+ + 5Cl2 + 8 H2O + E

Die Farben der unterschiedlichen Manganionen

Bearbeiten

Mn7+ (VII) - z.B. (MnO4)- ist violett

Mn6+ (VI) - z.B. (MnO4)2- ist grün

Mn4+ (IV) - z.B. (MnO2) ist braun (MnO2 = Braunstein)

Mn2+ (II) - z.B. MnO ist farblos

Zusatzinformationen:

Bearbeiten

 Mangan

Übungsaufgaben Redoxreaktionen

Bearbeiten
  1. Formuliere für die angegebenen Reaktionen Teilgleichungen für die Oxidation und Reduktion und die Redoxgleichung für diese Reaktion.  Kennzeichne in der Redoxreaktion Reduktionsmittel und Oxidationsmittel.
    a) Aluminium reagiert mit Chlor zu Aluminiumchlorid.
    b) Leitet man Chlorgas in Ammoniakgas ein, so kommt es zur Bildung von Stickstoff und Chlorwasserstoffgas.
    c) Wenn man konzentrierte Schwefelsäure mit Kohlenstoff (C) erhitzt, dann entstehen Schwefeldioxid und ein anderes, farbloses Gas. Wenn man dieses Gas in Calciumhydroxidlösung ("Kalkwasser") leitet, entsteht eine weiße Trübung (Niederschlag).
    d) Schwefelwasserstoff wird in Chlorwasser eingeleitet. Als Reaktionsprodukt entstehen Chloridionen und ein gelber Feststoff.

Verfahre bei den folgenden Aufaben wie oben.

  1. 2 H2S + SO2 3 S + 2 H2O (Synproportionierung)
  2. 3 Br2 + 6 OH- 5 Br- + BrO3- + 3H2O (Disproportionierung)
  3. Reaktion einer Kaliumpermanganatlösung mit Wasserstoffperoxidlösung im alkalischen Medium. Es entstehen Braunstein (MnO2) und Sauerstoff.
  4. Chlor reagiert mit Natronlauge. Es entstehen Chlorid und Hypochlorit (OCl-)
    Cl2 + 2 NaOH NaCl + NaOCl + H2O (Disproportionierung)
  5. KMnO4 + Mn(OH)2 MnO2 + KOH + H2O
  6. Natrium reagiert beim Kontakt mit Wasser zu Natronlauge und Wasserstoff
Oxidation: 2 Na 2 Na+ + 2 e-
Reduktion: 2 H2O + 2 e- 2 OH- + 2 H2

2 Na + 2 H2O 2 Na+ + 2 OH- + H2

Tipp
Wenn ein Element oder ein Ion oder ein Molekül e- aufnimmt ist das eine Reduktion. Man kann sich das besser merken, wenn man daran denkt, dass das Molekül etwas negatives bekommt und die Oxidationszahl kleiner (reduziert) wird.
(Bei der Elektrolyse geschieht dies an der Kathode - nur dort!)
Wenn ein Element oder ein Ion oder ein Molekül e- abgibt ist es eine Oxidation
(Bei der Elektrolyse geschieht dies an der Anode - nur dort!)

Die Elektrolyse - eine erzwungene Redoxreaktion

Bearbeiten

V: Zn in I2-Lösung Entfärbung

V: Zersetzung einer ZnI2-Lösung durch elektrischen Strom

Bedeutung von Redoxvorgängen

Bearbeiten

Beispiele aus der Natur:

Photosynthese: E + 6 CO2 + 6 H2O C6H12O6 + 6 O2
Zellatmung: C6H12O6 + 6 O2 6 CO2 + 6 H2O + E
Alkoholische Gärung: C6H12O6 2 CO2 + 2 CH3CH2OH + E
Beispiele aus der Technik
  • Alle Formen der Metallgewinnung aus Erzen
  • Korrosionsprozesse (Rosten)
  • Stromerzeugung durch Batterien oder Akkumulatoren (z.B. Brennstoffzelle)

Übungsaufgaben

Bearbeiten

Redoxreaktionen ausgleichen bis der Arzt kommt ;)

  1. MnO4 + NO2 → Mn2+ + NO3
  2. ClO + CrO22− + OH → Cl + CrO42−
  3. HBrO3 + Bi → HBrO2 + Bi2O3
  4. Zn(s) + NO3 + → Zn2+ + NH3 + OH
  5. Ag + H2SO4 → Ag2SO4 + SO2
  6. Al + H2SO4 → Al2(SO4)3 + SO2
  7. Bi + HNO3 → Bi(NO3)3 + NO
  8. Cr2O72− + H2S → Cr3+ + S + OH
  9. Cu + HNO3 → 3 Cu(NO3)2 + NO
  10. FeSO4 + HIO3 + H2SO4 → I2 + Fe2(SO4)3 + H2O
  11. MnO2 +Cl + H+ → H2O + Cl2 + Mn2+
  12. MnO4− + C2O42− + H3O+ → Mn2+ + CO2
  13. P + HNO3 + H2O → H3PO4 +NO
  14. PbO2 + HCl → PbCl2 + Cl2
  15. SbH3 + OH → Sb(OH)4 + H2
  16. Sn + HNO3 → SnO2 + NO2
  17. SO2 + I2 + OH → SO3 + 2I
  18. SO32− + Sn2+ +H3O+ → SnS2 + Sn4+

Lösungen

Bearbeiten
  1. 2 MnO4 + 6 H+ + 5 NO2 → 2 Mn2+ + 3 H2O + 5 NO3
  2. 2 ClO + CrO22− → 2 Cl + CrO42−
  3. 3 HBrO3 + 2 Bi → 3 HBrO2 + Bi2O3
  4. 4 Zn(s) + NO3 + 6 H2O → 4 Zn2+ + NH3 + 9 OH
  5. 2 Ag + 2 H2SO4 → Ag2SO4 + SO2 + 2H2O
  6. 2 Al + 6 H2SO4 → Al2(SO4)3 + 3 SO2 + 6 H2O
  7. Bi + 4HNO3 → Bi(NO3)3 + 2H2O + NO
  8. Cr2O72− + 3 H2S + H2O → 2 Cr3+ + 3 S + 8 OH
  9. 3 Cu + 8 HNO3 → 3 Cu(NO3)2 + 2 NO + 4 H2O
  10. 10 FeSO4 + 2 HIO3 + 5 H2SO4 → I2 + 5 Fe2(SO4)3 + 6 H2O
  11. MnO2 + 2 HCl + 2 H+ → 2 H2O + Cl2 + Mn2+
  12. 2 MnO4− + 5 C2O42− + 16 H3O+ → 2 Mn2+ + 10 CO2 + 8 H2O
  13. 3 P + 5 HNO3 +2 H2O → 3 H3PO4 +5 NO
  14. PbO2 + 4 HCl → PbCl2 + Cl2 + 2 H2O
  15. SbH3 + OH + 3 H2O → Sb(OH)4 + 3 H2
  16. Sn + 4 HNO3 → SnO2 + 4 NO2 + 2 H2O
  17. SO2 + I2 + 2 OH → SO3 - 2 I + H2O
  18. 2 SO32− + 6 Sn2+ + 12 H3O+ → SnS2 + 5 Sn4+ + 18 H2O

Die Redoxreihe (Spannungsreihe) der Metalle

Bearbeiten

a) Experimentelle Befunde:

Bearbeiten
Eisennagel in Kupfer(II)-Sulfatlösung

V1: Eintauchen eines Eisennagels in eine Kupfersulfatlösung

B: Der Nagel läuft erst dunkel an, dann bildet sich ein rötlicher Feststoff

S: Am Eisennagel entsteht elementares Kupfer. Aus dem elementaren Eisen werden Eisenionen


V2: Umkehrversuch: Kupfernagel in eine Eisensulfatlösung

B: keine Reaktion

S: Fe reduziert Cu2+, aber umgekehrt kommt diese Reaktion nicht zustande.

→ Fe ist ein stärkeres Reduktionsmittel als Cu

Zunahme des Reduktionsvermögens: Cu → Fe

Zunahme des Oxidationsvermögens: Fe2+ → Cu2+

Metall und Metallion bilden dabei immer ein Paar! Man spricht auch von einem korrespondierenden Redoxpaar. Ist das Metall ein starkes Reduktionsmittel, so ist das zugehörige Metallkation ein schwaches Oxidationsmittel und umgekehrt.

b) Erklärung: Lösungsdruck und Abscheidungsdruck

Bearbeiten

Eisenatome gehen vom Stab als Ionen in Lösung. Dabei werden Elektronen frei.

Metallatome haben die Fähigkeit, in wässriger Lösung wenige Elektronen abzugeben und als Ionen in Lösung zu gehen. Man spricht vom Lösungsdruck bzw. der Lösungstension.

Diese Lösungstension ist v.a. davon abhängig, wie edel ein Metall ist.

Je edler ein Metall dabei ist, desto weniger Ionen gehen in Lösung und desto geringer ist die Lösungstension (der Lösungsdruck).

Bei unedlen Metallen gehen viele Ionen in Lösung, bei edlen nur sehr wenige.

Umgekehrt nennt man das Bestreben von Metallionen Elektronen aufzunehmen und zu Metallatomen zu reagieren, als Abscheidungsdruck.

Jedes Metall hat einen bestimmten, charakteristischen Lösungsdruck und einen bestimmten Abscheidungsdruck.

Dabei stellt sich zwischen den Ionen, die in Lösung gehen und der Anzahl der Ionen die sich an der Elektrode abscheiden und zum Metall reagieren ein Gleichgewicht ein.

Je nachdem ob Lösungsdruck oder Abscheidungsdruck stärker sind, herrscht an der Elektrode Elektronenmangel oder -Überschuss.

c) Einordnung weiterer Metall in die Spannungsreihe (Schülerversuch)

Bearbeiten

Macht man nun solche Versuche mit weiteren Metallen und Salzlösungen (z.B. Pb, Ag, Zn), ist immer ein der Stoff der edlere, der als Metall aus der Salzlösung heraus entsteht.

V: Bestimme die Redoxreihe der vorgegebenen Metalle

B:

Cu Fe Zn (Pb)
Cu2+
Fe2+
Zn2+
(Pb2+)

S: Wenn der jeweilige Versuch abläuft, kann man daraus schließen, das das neu gebildete Metall edler als das der Ionenlösung ist.

Läuft die Reaktion ab, dann ist das neu gebildete Metall edler, als das Metall, welches vorher vorlag.

Man kommt so auf folgende Redoxreihe (=Spannungsreihe):

Zunahme des Reduktionsvermögens: Ag, Cu, Pb, Fe, Zn

Zunahme des Oxidationsvermögens: Zn2+, Fe2+, Pb2+, Cu2+, Ag+

Jedes Metall in der oben stehenden Reihe reduziert die Ionen der rechts von ihm stehenden Metalle.
Aufgaben
  1. Was beobachtet man beim Eintauchen eines Silberblechs in Kupfersulfatlösung?
  2. Was beim Eintauchen von Kupfer in eine Silbernitratlösung?

d) Die Redoxreihe (Spannungsreihe) der Nichtmetalle

Bearbeiten

Nichtmetalle kommen entweder fest (wie z.B. Kohlenstoff oder Schwefel), flüssig (Brom) oder gasförmig (z.B. Fluor, Chlor, Stickstoff usw.) vor. Nur bei Feststoffen sind einfache Elektroden möglich (z.B. die Graphitelektroden). Bei anderen Aggregatzuständen muss man etwas tricksen...

V: Erstelle die Redeoxreihe der Halogene, indem Du die Elemente mit den jeweilig passenden Lösungen reagieren lässt. Wenn noch Zeit ist, kannst Du Schwefel und Sulfid (aus H2S) in die Versuchsreihe mit aufnehmen. Mit Fluor sind keine Versuche möglich. Vielleicht kannst Du es aufgrund seiner sehr hohen Reaktivität einordnen?

Cl2-Wasser + KBr
Cl2-Wasser + KI
Br2-Wasser + KCl
Br2-Wasser + KI

B:

S: Auch Nichtmetalle lassen sich in eine solche „Hitparade der edlen Stoffe“ einordnen. Anstelle der festen Metalle, werden Nichtmetalle entweder in Wasser (z.B. Bromwasser, Chlorwasser). gelöst verwendet oder als Gas auf eine Metallelektrode (z.B. Pt) geströmt.

Reduktionsvermögen der Ionen nimmt zu / Oxidationsvermögen der Moleküle nimmt ab: Cl-/Cl2, Br-/Br2, I-/I2, S2-/S, F-/F2

Jedes Nichtmetall in oben stehender Reihe oxidiert die Ionen der rechts von ihm stehenden Nichtmetalle.

Lösungsdruck und Abscheidungsdruck

Bearbeiten
Metallatome haben die Fähigkeit, Elektronen abzugeben und als Ionen in Lösung zu gehen.

Man spricht vom Lösungsdruck bzw. der Lösungstension.

Je edler dabei ein Metall ist, desto weniger Ionen gehen in Lösung und desto geringer ist der Lösungsdruck.

Umgekehrt nennt man das Bestreben von Metallionen Elektronen aufzunehmen und zu Metallatomen zu reagieren, als Abscheidungsdruck.

Jedes Metall hat einen bestimmten, charakteristischen Lösungsdruck und einen bestimmten Abscheidungsdruck.

Dabei stellt sich zwischen den Ionen, die in Lösung gehen und der Anzahl der Ionen die sich an der Elektrode abscheiden und zum Metall reagieren ein Gleichgewicht ein.

Je nachdem ob Lösungsdruck oder Abscheidungsdruck stärker sind herrscht an der Elektrode Elektronenmangel oder -Überschuss.

V:

Zn in CuSO4-Lösung.
Cu in ZnSO4-Lösung

B: Cu scheidet sich ab, Zn nicht.

S: → Kupfer ist edler als Zink.

Dies macht man sich nun für das Daniell-Element zunutze (siehe auf den folgenden Seiten).

Ein Zink und ein Kupferstab in einer Kupfersulfatlösung (CuSO4)

Bearbeiten

Betrachtet man nun zwei verschieden edle Metalle in einer Lösung und verbindet diese über ein Spannungsmessgerät, so kann man ein Potential (U) mit einem geringem Beobachtung: Stromfluss (I) und eine Abscheidung am Zinkstab (=Vergiftung) beobachten

Vorgänge am Cu-Stab

Cu2+ (aus der Lösung) nimmt 2e- vom Stab auf und setzt sich als elementares Cu am Cu-Stab fest:

Red1: Cu2+ + 2 e → Cu
Vorgänge am Zn-Stab

Vom Zn-Stab gehen Zn2+ in Lösung, dabei werden jeweils e- frei:

Ox: Zn → Zn2+ + 2 e

Weiterhin gelangen auch Cu2+-Ionen zum Zinkstab und nehmen von dort direkt 2 eauf. Es bildet sich also auch am Zinkstab etwas Kupfer: Red2: Cu2+ + 2e → Cu (aber am Zinkstab!). Dieses Kupfer blockiert nach einiger Zeit die Abgabe von weiteren Zinkionen in die Lösung, so dass die Reaktion am Zinkstab zum Erliegen kommt. Nach einiger Zeit kommt die Reaktion zum Erliegen. Dies geht einher mit einer großen Menge Kupfer, die sich am Zinkstab abscheidet. Man sagt, der Zinkstab wird vergiftet.

Um genau diesen Effekt, das Vergiften der Zink-Elektroden, vorzubeugen, wäre eine Elektronen und (kleine) Ionen durchlassende Membran von Vorteil. Wichtig ist, das eine solche Trennung so wenig Kupferionen wie möglich passieren lässt.

Natürlich sollte man die Zinkelektrode dann auch nicht in Kupferionenlösung stellen, sondern eher in eine Zinkionenlösung.

Das Volta-Element

Bearbeiten

Viele Galvanische Elemente haben keinen Namen, aber neben dem Daniell-Element (siehe nächste Seite), gibt es noch ein zweites bekanntes, das zuerst von Alessandro Volta aufgestellt wurde.

V: Ein Silberstab und ein Zinkstab werden in ihre entsprechenden Ionenlösungen (z.B. Silbersulfat und Zinksulfat) gestellt und leitend miteinander verbunden. (Alternativ können auch ein Tonzylinder, oder ein spezielles U-Rohr mit Diaphragma verwendet werden).

Um einer Vergiftung vorzubeugen, findet eine Erweiterung auf zwei Halbzellen statt. Die leitende Verbindung, welche einen geschlossenen Stromkreis garantiert ist die Salzbrücke (ein Filterpapier in Kochsalzlösung getaucht).

Vorgänge im Detail

Es liegen 2 Redoxpaare (Zn/Zn2+ sowie Ag/Ag+) vor. Bei Tonzylinder bzw. Diaphragma:

  1. wenige Silberionen gehen vom Silberstab in Lösung  er ist deshalb positiver als der Zinkstab, an dem viele Ionen in Lösung gehen
  2. Zink wird oxidiert und gibt e- ab
  3. Die Elektronen wandern über einen Leiter zum Silber.
  4. Die gelösten Silberionen der Silberlösung nehmen die Elektronen auf und werden somit reduziert.

red: Ag+ + e → Ag

ox: Zn → Zn2+ +2e


Zn + Ag+ → Ag + Zn2+

Zwei getrennte Halbzellen: Galvanische Elemente

Bearbeiten

Wie kann man das vorzeitige Vergiften des Zinkstabes verhindern?

- der Zinkstab darf nicht in Kupferionenlösung stehen → räumliche Trennung in zwei Halbzellen

V: Ein Kupferstab und ein Zinkstab werden in ihre entsprechenden Ionenlösungen (z.B. Kupfersulfat und Zinksulfat) gestellt und leitend miteinander verbunden. (Alternativ können auch ein Tonzylinder, oder ein spezielles U-Rohr mit Diaphragma verwendet werden).

B: Es liegen 2 Redoxpaare (Zn/Zn2+ sowie Cu/Cu2+) vor. Bei Tonzylinder bzw. Diaphragma wird eine Spannung von 1,1V gemessen. Bei der Salzbrücke ist sie etwas geringer. Die Reaktion kommt dann zustande, wenn beide Teilsysteme elektrisch (Draht) und elektrolytisch (Salzbrücke, Diaphragma) verbunden sind.


S: Am Kupferstab gehen nur wenige Kupferionen in Lösung, er ist deshalb positiver als der Zinkstab, an dem viele Ionen in Lösung gehen und somit viele freie e- vorliegen. Aus diesem Grund ist der Kupferstab positiv geladen und der Zinkstab negativ.

red: Cu2+ + 2e → Cu

ox: Zn → Zn2+ +2e


Zn + Cu2+ → Cu + Zn2+

  • Zink wird oxidiert und gibt e- ab
  • Zink bildet den negativen Pol, Kupfer den positiven Pol  Bei Kupfer überwiegt hier der Abscheidungsdruck, bei Zink der Lösungsdruck.
  • → Bedingt durch den für jedes Metall charakteristischen Lösungs- und Abscheidungsdruck kommt es zwischen den beiden Halbzellen zu einer Spannung.
  • Die Elektronen wandern über einen Leiter zum Kupfer. Dabei lässt sich eine Spannung von 1,07 Volt messen.
  • Die gelösten Kupferionen nehmen die Elektronen auf.
  • Den Spannungsunterschied im stromlosen Zustand nennt man Leerlaufspannung.
  • Außerdem kann man nun jeder Halbzelle ein bestimmtes elektrisches Potential (E) zuordnen. Die Leerlaufspannung ergibt sich aus der Differenz der Potenziale der beiden Halbzellen.
Die beiden Teilvorgänge der Redoxreaktion können also räumlich getrennt werden. Die e- gehen also nicht mehr direkt vom System Zn/Zn2+ auf das System Cu/Cu2+ über, sondern wandern zuerst über einen Draht vom Zn zum Cu. Es fließt ein Elektronenstrom.

Die beiden getrennten Teilsysteme nennt man „Halbzellen“.

Unter einem galvanischen Element versteht man eine Zusammenstellung aus zwei verschiedenen, räumlich getrennten Redoxsystemen.

Beide Teilsysteme sind elektrisch und elektrolytisch verbunden.

Normalerweise würden die e- am Zinkstab dafür sorgen, dass sich dort Cu2+ aus der Lösung angezogen wird, sich absetzt und reduziert wird. die räumliche Trennung erlaubt den Transport der e- zuerst zum Kupferstab, an dem dann die Reduktion stattfindet.
Wichtige Begriffe
  • Halbzelle (Halbelement): 1 Metall in seiner Salzlösung
  • Galvanisches Element:2 Halbzellen, elektrisch und elektrolytisch verbunden.
  • Ein Zink-Kupferelement wird auch als Daniell-Element bezeichnet.
  • Anode:Elektrode, an der Teilchen oxidiert werden.
  • Kathode:Elektrode, an der Teilchen reduziert werden.
Beim galvanischen Element stellt die Anode den Minuspol dar, die Kathode den Pluspol.
Vorgänge in den Halbzellen
  • An der Zinkelektrode gehen Zinkionen in Lösung, an der Kupferelektrode scheidet sich Kupfer ab.
  • In der Zn/ZnSO4-Halbzelle entsteht ein Überschuss an Zn2+-Ionen in der Cu/CuSO4-Halbzelle ein Überschuss an SO42--Ionen.

Kurzschreibweise für Galvanische Elemente:

Bearbeiten
- Pol
Anode
+ Pol
Kathode
Zn/ZnSO4//CuSO4/Cu

Liegt ein Stoff als Gas vor, so notiert man noch das Metall, welches als Träger dient:

Pt/H2/H+//Cu2+/Cu

Zusatzinformationen

 Daniell-Element  Galvanische Zelle

Elektrochemisches Gleichgewicht (nur GK/LK)

Bearbeiten

Erinnere Dich an das Thema „Gleichgewichtsreaktionen“. Bei vielen chemischen Reaktionen liegen Gleichgewichte vor. In der Elektrochemie liegen so genannte elektrochemische Gleichgewichte vor.

Wie Du im vorherigen Versuch gesehen hast, fließen Elektronen in einem galvanischen Element von Halbzelle zu Halbzelle. Dabei treten in jeder Halbzelle Ionen durch die Phasengrenze fest/ flüssig hindurch (in beiden Richtungen). Hier liegt also ein Gleichgewicht vor.

Anfangs überwiegt z.B. die Abgabe von Metallionen der festen Elektrode an die flüssige Phase. In der Konsequenz wird das Metall durch die freien Elektronen negativer, was dazu führt, dass Ionen der Lösung angezogen werden und von der flüssigen Phase in die feste übergehen.

Im Gleichgewichtszustand treten in einem Zeitabschnitt genauso viele Ionen von beiden Richtungen durch die Phasengrenze. An genau dieser Phasengrenze entsteht so eine „Schicht“ aus negativen und positiven Ladungen.

Walther Hermann Nernst beschrieb dies als Gleichgewicht zwischen dem Lösungsdruck des Metalls und dem Abscheidungsdruck der Ionen.

Elektrochemische Gleichgewichte stellen sich schnell ein. Da an den verschiedenen Metallen der beiden Halbzellen unterschiedliche Gleichgewichte vorliegen, ist zwischen ihnen eine Spannung messbar.

Zusatzinformationen

 Elektrochemisches Gleichgewicht

Die Salzbrücke

Bearbeiten

Ein Galvanisches Element ist eine Spannungsquelle. Elektronen fließen vom unedlen Metall zum Edlen. Solange keine Salzbrücke oder eine leitende Verbindung vorhanden ist, laden sich die Metallstäbe nur auf. Es gehen von jedem Stab daraufhin so viele Ionen in Lösung, wie sich daran festsetzten (ein Gleichgewicht). Wird nun aber der Stromkreis geschlossen, kommt es zum Stromfluss. Da Elektronen durch das Kabel und das Messgerät fließen, müssen die Ladungen nun durch weitere Ionen ausgeglichen werden.

Da sich aber vom unedlen Pol (im Versuch vorher Zink) mehr Ionen ablösen (immer mehr Zinkionen), würden diese Ionen mit der Zeit, den edlen Pol (im Versuch vorher Kupfer) langsam mit einer metallischen Schicht überziehen (vergiften). Die Reaktion käme zum Stillstand.

Die Salzbrücke, durch die auch ein langsamer Ionenaustausch stattfindet, verhindert zumindest eine Zeit lang das Vergiften der Metallelektroden.

Einen ähnlichen Effekt hat ein selektivpermeables Diaphragma, welches nur Ionen bestimmter Größe durchlässt.

Das Normalpotential

Bearbeiten

Die Standardhalbzelle wird bei Standardbedingungen gemessen:

Standarddruck: 101325 Pa (=1013,25 hPa = 1013 mbar)

Standardtemperatur T = 298,15K (= 25°C)

Standardkonzentration: c = 1 mol/L

Um einen absoluten Bezugspunkt zu haben, der es ermöglicht, alle Metalle gegeneinander in Beziehung zu setzten, misst man die Metalle immer im Vergleich zu „Standardwasserstoff­elektrode“ als Bezugselektrode.

Zusatzinformationen

 Normalpotential  Redoxpotenzial  Galvanische Zelle  Elektrochemisches Potential  Nernst-Gleichung  Elektrode  Kathode  Anode  Batterie  Akkumulator  Elektrochemische Spannungsreihe

Die elektrochemische Spannungsreihe der Metalle

Bearbeiten
Redoxpotential eines Metalls: Bestreben e- abzugeben und zum Kation zu werden. Es muss aber immer ein Reaktionspartner vorhanden sein, dem die e- übertragen werden können.

V: Gemessen werden Potentialunterschiede verschiedener Metalle gegeneinander.

B:

positiver Pol
negativer Pol
Li / Li+ Mg / Mg2+ Zn / Zn2+ Cu / Cu2+ Ag / Ag2+
Li / Li+ 0 V - - - -
Mg / Mg2+ 0,7 V 0 V - - -
Zn / Zn2+ 2,3 V 1,6 V 0 V - -
Cu / Cu2+ 3,4 V 2,7 V 1,1 V 0 V -
Ag / Ag2+ 3,8 V 3,1 V 1,5 V 0,4 V 0 V

S:

Die elektrochemische Spannungsreihe der Nichtmetalle

Bearbeiten

V: Nichtmetallhalbzellen gegeneinander zu messen ist manchmal etwas schwieriger, da einige Nichtmetalle bei Raumtemperatur keine Feststoffe sind. Als Beispiel können eine Iod/Iodid und eine Brom/Bromid Halbzelle gegeneinander gemessen werden.

B: Spannungsunterschied 0,5 V

Die Standard-Wasserstoffelektrode

Bearbeiten

Damit nun die gemessenen Unterschiede absolut ineinander in Beziehung gesetzt werden können, braucht man einen Bezugspunkt. Definiert wurde hierzu die wasserstoffumspülte Platinelektrode, auch Standardwasserstoffelektrode genannt.

Auch hier gilt: c(H3O+) = 1 mol/l, p(H2) = 1013 hPa, T= 25°C

2 H2O + 2 H+ ⇌ 2 H3O+ + 2 e-
H2 ⇌ 2 H+ + 2 e-

Dabei gilt

Halbzellen, welche gegenüber der Normal-Wasserstoffelektrode als Anode (Minuspol) fungieren, wird ein negatives Standardpotential zugeordnet.

Unedle MetalleStandardpotential < 0

Edle MetalleStandardpotential > 0

Je negativer das Standardpotential desto stärker das Reduktionsmittel. Je positiver das Standardpotential desto stärker das Oxidationsmittel.

→ stärkste Reduktionsmittel: Li, Na, K,

→ stärkste Oxidationsmittel: Halogene

Bringt man nun die in den vorherigen Versuchen gemessenen Werte in Bezug auf die Standardwasserstoffhalbzelle, ergibt sich die Spannungsreihe. Sie erlaubt nicht nur Vorhersagen, welche Spannungen beliebige Kombinationen von Halbzellen erzeugen, sondern auch, welcher Stoff im Vergleich zu einem anderen edler bzw. unedler ist.

Außerdem liefert die Spannungsreihe Vorhersagen über den Ablauf von chemischen Reaktionen in wässriger Lösung (also ob eine bestimmte Reaktion möglich ist).
Zusatzinformationen

 Wasserstoffelektrode

Die elektrochemische Spannungsreihe

Bearbeiten

Die Elektrochemische Spannungsreihe ist eine Auflistung von Redox-Paaren nach ihrem Standardelektrodenpotential unter Standardbedingungen:

Oxidierte Form Reduzierte Form Standardpotential E0
F2 + 2e 2 F +2,87 V
S2O82− + 2e 2 (SO4)2− +2,00 V
H2O2 + 2 H3O+ + 2e 4 H2O +1,78 V
Au+ + e Au +1,69 V
(MnO4)+ 8 H3O+ + 5e Mn2+ + 12 H2O +1,51 V
Au3+ + 3e Au +1,42 V
Au2+ + 2e Au+ +1,40 V
Cl2 + 2e 2Cl +1,36 V
O2 + 4 H3O+ + 4e 6 H2O +1,23 V
Pt2+ + 2e Pt +1,20 V
Br2 + 2e 2Br +1,07 V
Hg2+ + 2e Hg +0,85 V
Ag+ + e Ag +0,80 V
Hg2+ + 2e Hg+ +0,80 V
Fe3+ + e Fe2+ +0,77 V
I2 + 2e 2I +0,53 V
Cu+ + e Cu +0,52 V
[Fe(CN)6]3− + e [Fe(CN)6]4− +0,361 V
Cu2+ + 2e Cu +0,34 V
Cu2+ + e Cu+ +0,16 V
Sn4+ + 2e Sn2+ +0,15 V
2H+ + 2e H2 0 V
Fe3+ + 3e Fe −0,04 V
Pb2+ + 2e Pb −0,13 V
Sn2+ + 2e Sn −0,14 V
Ni2+ + 2e Ni −0,23 V
Cd2+ + 2e Cd −0,40 V
Fe2+ + 2e Fe −0,41 V
S + 2e S2− −0,48 V
NiO2 + 2 H2O + 2e Ni(OH)2 + 2 (OH) −0,49 V
Zn2+ + 2e Zn −0,76 V
2 H2O + 2e H2 + 2 (OH) −0,83 V
Cr2+ + 2e Cr −0,91 V
Nb3+ + 3e Nb −1,099 V
V2+ + 2e V −1,17 V
Mn2+ + 2e Mn −1,18 V
Ti3+ + 3e Ti −1,21 V
Al3+ + 3e Al −1,66 V
Ti2+ + 2e Ti −1,77 V
Be2+ + 2e Be −1,85 V
Mg2+ + 2e Mg −2,38 V
Na+ + e Na −2,71 V
Ca2+ + 2e Ca −2,76 V
Ba2+ + 2e Ba −2,90 V
K+ + e K −2,92 V
Li+ + e Li −3,05 V
Zusatzinformationen
 Spannungsreihe

Aussagen der Spannungsreihe I - Berechnung der Leerlaufspannung

Bearbeiten

Wenn man mithilfe der Spannungsreihe die Spannung von zwei bestimmten Halbzellen vorhersagen, so kann man sie direkt durch eine Subtraktion bestimmen. Man nennt diese Spannung auch Leerlaufspannung (ΔE0)bzw elektromotorische Kraft (EMK).

 Die Spannungsreihe liefert Aussagen über den Ablauf von chemischen Reaktionen. Sie lässt Vorhersagen zu, ob eine bestimmte Reaktion möglich ist.

Beispiel: Berechnung der Leerlaufspannung des Daniell-Elementes:

Bearbeiten
ULeerlauf = ΔE0 = EMK = E0Kathode – E0Anode

Cu/Cu2+: Kathode (+)

Zn/Zn2+: Anode (-)

U Leerlauf (Cu/Cu2+// Zn/Zn2+) = 0,34 V - (- 0,76 V) = + 1,10 V

Ein Metall kann die MetallIonen, die über ihm in der Redoxreihe stehen zum Element reduzieren!

Aussagen der Spannungsreihe II - Vorhersage über Redoxreaktionen

Bearbeiten

Ob eine Redoxreaktion zwischen zwei Halbzellen (gleicher Konzentration![1]) ablaufen kann, hängt von den Redoxpotentialen ab. Berechnet man die EMK und erhält ein Ergebnis ΔE0 >0 kann die Reaktion theoretisch ablaufen.

Unter Umständen gibt es aber weitere Hinderungsgründe wie z.B. eine Gasbildung, welche die Elektroden blockieren (oder eine feine Oxidschicht, wie beim Aluminium), welche eine praktische Reaktion dann doch behindern.

Das Standardpotential des Oxidationsmittels muss positiver sein, als das des Reduktionsmittels.

So können z.B. die H+-Ionen einer Säure nur die Metalle oxidieren, welche ein negativeres Normalpotential haben (also unedlere Metalle). Edle Metalle mit E0 > 0 werden von Säure nicht angegriffen.

Wenn Reaktionen nicht freiwillig ablaufen, da ΔE0 < 0, kann man stattdessen die berechnete Spannung anlegen. Man spricht dann von einer Elektrolyse.

Ausschnitt aus der Spannungsreihe zum Daniell Element:

Bearbeiten

Zink als reduziertes Metall kann mit der oxidierten Form, den Kupferionen reagieren. Also kann man die generelle Hilfsregel ableiten, dass das weiter unten reduzierte Form theoretisch immer mit der weiter oben stehenden oxidierten Form reagieren kann.

Zusammenfassung
  • Halbelementen, die gegenüber der Normal-Wasserstoffelektrode als Anode (Minuspol) fungieren, wird ein negatives Standardpotential zugeordnet:

→ unedle MetalleStandardpotential < 0

→ edle MetalleStandardpotential > 0

  • Je negativer das Normpotential einer Halbzelle, desto stärker ist sie als Reduktionsmittel und desto höher ist die Lösungstension des betreffenden Metalls/ Nichtmetalls. desto unedler ist das Element
  • Je positiver das Standardpotential desto stärker das Oxidationsmittel und desto niedriger ist die Lösungstension  desto edler ist das Element:

→ stärkste Reduktionsmittel:Li, Na, K

→ stärkste Oxidationsmittel:Halogene

Aufgaben

Bearbeiten
  1. Stelle die Reaktionsgleichung der elektrochemischen Reaktion des Daniell-Elementes auf.
  2. Welche unerwünschten Vorgänge finden in galvanischen Elementen statt, wenn sie nicht durch ein Diaphragma oder eine Salzbrücke in Halbzellen aufgetrennt sind? Gebe Reaktionsgleichungen dazu an.
  3. Definiere Kathode und Anode.
  4. Zeichne ein galvanisches Element mit einer Silber und einer Kupferelektrode. Bestimme die elektrischen Pole, Anode und Kathode sowie die Stromflussrichtung. Welche Spannung wird gemessen werden?
  5. Berechne die Leerlaufspannung des Zn/Zn2+ // H+/H2
  6. Wie lauten die genauen Standardbedingungen?
  7. Berechnen die Spannungen der folgenden galvanischen Elemente bei Standardbedingungen:
    a) Pb/Pb2+ // Pt/Pt2+
    b) Al/Al3+ // Br2/Br-/Pt
    c) Pb/Pb2+ // Fe2+/Fe3+/Pt
    d) Ag/Ag+ // Au/Au3+
  8. Definiere Oxidationsmittel und Reduktionsmittel. Welches Element ist das stärkste Oxidationsmittel?
  9. Läuft die folgenden Reaktion freiwillig ab? Berechne die EMK und stelle die Reaktionsgleichung auf.
    a) Chlor und Iodid
    b) Ein Zinkstab in einer Silberionenlösungb) Silber und Säure
    c) Eisen und Chlor
    d) MnO4 -Ionen in saurer Lösung H2O2
    e) Schwefelwasserstoff und Iod
    f) Brom wird in eine NaCl-Lösung gegeben
    g) Zinn wird in eine Eisen(II)-sulfatlösung gestellth) Kupfer reagiert mit einer Eisen(III)-sulfatlösung
  10. Warum kann man angelaufenes Silberbesteck in heißer Kochsalzlösung mit Aluminiumfolie „reinigen“?

Elektrochemische Stromerzeugung für den Alltag

Bearbeiten

V: In einem Batterieglas mit Ammoniumchloridlösung steht ein Zinkbecher.In die Lösung taucht man eine Graphitelektrode ein, die mit einem mit Braunstein gefüllten Beutel umhüllt ist. (Im Leclanché-Element ist die Ammoniumchloridlösung durch Gelatine eingedickt).Die beiden Elektroden werden durch ein Voltmeter verbunden.

Die Trockenbatterie (Leclanché Element)

Bearbeiten

Redoxsysteme
am Zinkbecher: Zn → Zn2+ + 2 e-
am Kohlestab: 2 MnO2 + 2 H3O+ + 2 e- → Mn2O3 + H2O

Bilanz: Zn + 2 MnO2 + 2 H3O+ → Zn2+ + Mn2O3 + H2O

Das Oxoniumion entsteht durch die Protolyse des Ammonium-Ions

NH4+ + H2O → NH3 + H3O+

Ammoniak entweicht nicht, sondern wird an Zink-Ionen gebunden.

Spannung: ca. 1,5 V

Anwendung: Taschenlampenbatterie usw.

Weiterlesen

Bearbeiten

 Bleiakkumulator  Elektrolyse  Korrosion  Bayer-Verfahren  Schmelzflusselektrolyse

Wiederholungsfragen

Bearbeiten
  1. Wie bestimmt man Ionenladungen?
  2. Wiederhole die Dissoziationsgleichungen der Säuren und Laugen
  3. Erstelle eine Übersicht mit Ionenladungen der Säurereste
  4. Was ist eine „Ionenbindung“?
  5. Wiederhole die „Zusammensetzung der Salze“
  6. Was sind Oxidationszahlen? Wiederhole alle Regeln zum Bestimmen von Oxidationszahlen
  7. Bestimme die Oxidationszahlen von: NH3, NH4+, Cl2, O2-, SO42-, CaO, AlBr3, S2O32-, H2CO3, NaNO3, K2Cr2O7, IO3-, LiH, KMnO4, Al2O3, Mg, H2O, H2SO3, H2S, H3PO3, H2O2, S8, H2SO4, H3PO4, CaHPO4.
  8. Definiere die Begriffe Oxidation, Reduktion und Redoxreaktion
  9. Wiederhole die Schritte zum Erstellen der Reaktionsgleichungen
  10. Wiederhole Dir bekannte Redoxreaktionen und erstelle die passenden Reaktionsgleichungen.
  11. Erstelle die Gleichung der Zellatmung. Ist dies eine Redoxreaktion? Beweise es!
  12. Löse folgende Reaktionsgleichungen: FeSO4 + HIO3 + H2SO4 I2 + Fe2(SO4)3Zn + NO3- + H2O Zn2+ + NH3 + OH-
  13. Wie kann man Metalle hinsichtlich ihres Oxidationsvermögens/ Reduktionsvermögens untersuchen (also ihres unedlen/ edlen Charakters)?
  14. Erkläre den Begriff „Lösungstension“ (=Lösungsdruck)
  15. Wie kommt es durch die Lösungstension zu verschiedenen Spannungspotentialen bei Cu und Zn-Stäben?
  16. Wie kann man ein vergiften vermeiden?
  17. Erkläre genau die Vorgänge an beiden Stäben mit Reaktionsgleichungen und einer Gesamtreaktionsgleichung.
  18. Was sind Galvanische Elemente und was ist ein Daniell-Element? Erkläre mit einer beschrifteten Zeichnung
  19. Definiere: Anode, Kathode, Halbzelle, Normalpotential, elektrochemische Spannungsreihe
  20. Wirkt Wasserstoffperoxid (H2O2) eher als Reduktions- oder als Oxidationsmittel? Wie kann man dies theoretisch und praktisch beweisen?
  21. Bei der Kupfergewinnung kann man sich den besonderen Stoffwechsel von Bakterien zunutze machen. Erze mit geringem Kupferanteil werden dazu mit den Bakterien in Kontakt gebracht. Die Bakterien wandeln nun ebenfalls vorhandenes Fe2+ zu Fe3+ um. Das Produkt wandelt nun die Sulfidionen des Kupfersulfids in Sulfat um (Bildung von CuSO4). Kupfersulfat ist Wasserlöslich, so dass das Kupfersalz nun einfach aus dem Gestein gelöst und anschließend elektrolytisch Kupfer gewonnen werden kann. Stelle die passende Redoxreaktion auf.
  22. Wenn gelöster Schwefelwasserstoff an der Luft steht, wird die Lösung nach einiger Zeit gelb. Welche Reaktion läuft ab. Stelle dazu auch das Redoxpotential auf.



  1. Beachte, dass E0 Konzentrationsabhängig ist

Elektrochemie I

Bearbeiten

Einleitung - Was ist eine chemische Reaktion?

Bearbeiten

Zu Beginn etwas rotes Feuer:

V: Kaliumchlorat, Zucker und Strontiumnitrat werden vermischt und mit etwas Schwefelsäure zur Reaktion gebracht.

B: rote Stichflamme.

S: Spontan ablaufende Reaktion.

Was sind die Grundlagen der Reaktion?

Der Kennzeichen einer chemischen Reaktion

Bearbeiten

Definition Mittelstufenunterricht: „Bei chemischen Reaktionen finden eine Stoffumwandlung und eine Energieumwandlung statt“.

Definition Oberstufe: Chemische Reaktionen erkennt man z.B. durch:

  • Elektronenübertragung(Redoxreaktionen, Elektrolysen)
  • Protonenübertragung(Protolyse, Säure-Base-Reaktion)
  • Spaltung von Stoffen(Cracken, Explosion z.B. TNT)
  • Umlagerung von Gitterbausteinen(z.B. monokliner - rhombischer Schwefel / Graphit - Diamant)
Beispiel
Fällungsreaktion von AgCl:

Bisher fand immer eine Untersuchung der beteiligten Stoffe und der beteiligten Energie statt. Aber man kann eine Reaktion auch unter weiteren Aspekten betrachten. In diesem Kurs werden Reaktionsgeschwindigkeiten ebenfalls beobachtet und analysiert.

Schnelle Reaktionen: Knallgasprobe, Ausfällung von AgCl

Langsame Reaktionen: Rosten von Eisen, alkoholische Gärung, Assimilation grüner Pflanzen

Das Problem ist dabei jeweils
Wie kann man die Reaktionsgeschwindigkeit messen?
  • Verbrennen von Papier und beobachten
  • Was hat sich geändert in dieser Zeit → Stoffmenge / Konzentration
Reaktionskinetik befasst sich mit der Geschwindigkeit von Reaktionen
Aufgaben
  1. Erkläre/ definiere die folgenden Begriffe:
  • Chemische Reaktion und ihre Erkennungsmerkmale
  • Aktivierungsenergie und Reaktionsenergie (ab jetzt Reaktionsenthalpie genannt)
  • Endotherme sowie exotherme Reaktionen sowie Energiediagramm
  • Standard- und Normalbedingungen
  • Reaktionsgeschwindigkeit
  • Oxidation, Reduktion, Redoxreaktion
  • angeregter Zustand sowie Lichtemission
  • Energieformen

Energiebeteiligung bei chemischen Reaktionen

Bearbeiten

Bei jeder chemischen Reaktion spielt die Umwandlung von Energie eine Rolle. Entweder wird Energie freigesetzt, die z.B. vorher in den Ausgangsstoffen enthalten war, oder Energie wird zum Ablauf der Reaktion benötigt und somit dem System entzogen.

a) Energiediagramm (exotherme Reaktion)

Bearbeiten

Aktivierungsenergie (ΔHA), notwendig zum Auslösen der Reaktion

Reaktionsenthalpie (ΔHR), Energieüberschuss, der bei exothermen Reaktionen frei wird

Gesamt freiwerdende Energie (ΔHG)

Chemische Reaktionen, die unter Energieabgabe ablaufen heißen exotherme Reaktionen. Die freiwerdende Energie kann dabei als Wärme, Licht oder in anderen Formen vorliegen. Sie wird auch als Reaktionsenthalpie (ΔH) bezeichnet.

Chemische Reaktionen, bei denen ständig Energie zugeführt werden muss, damit sie überhaupt ablaufen, nennt man endotherme Reaktionen.

b) Energiediagramm (endotherme Reaktion)

Bearbeiten

Zusatzinformationen

Das freiwillige Ablaufen einer chemischen Reaktion wird durch die Gibbs-Helmholtz-Gleichung vorausgesagt. Sie bestimmt die freie Enthalpie (ΔG), welche nicht mit der Reaktionsenthalpie (ΔH) verwechselt werden sollte. ΔS gibt in dieser Gleichung übrigens die natürliche „Unordnung“ an, die Entropie.

Wenn ΔG < 0 ist, kann die Reaktion freiwillig ablaufen. Solche Reaktionen nennt man exergonisch. Dies ist besonders bei exothermen Reaktionen der Fall, da sie einen negativen Wert für ΔH haben. Endergonische Reaktionen hingegen laufen nicht freiwillig ab.

 Freie Enthalpie  Enthalpie  Gibbs-Helmholtz-Gleichung  Reaktionsenthalpie  Normalbedingungen  Standardbedingungen

Was ist die Reaktionsgeschwindigkeit?

Bearbeiten

Es gibt Reaktionen, die laufen schnell ab:

V: Fällungsreaktion von Silbernitrat mit Salzsäure

Reaktionen, die langsam ablaufen: V: RG mit Thiosulfat und HCl (untergehende Sonne - in kleinem Becherglas mit Kreuz):

Video anschauen

Die Reaktionsgeschwindigkeit chemischer Reaktionen ist u.a. von den chemischen Eigenschaften der Reaktionspartner abhängig.

Schülerversuch: Untersuchung der Reaktion von Thiosulfationen mit Säure

Bearbeiten

V: Es werden 1g Natriumthiosulfat in 100ml Wasser aufgelöst. Diese wird auf 4 kleine 100ml Bechergläser verteilt.

Die Reaktionen beginnen jeweils, wenn etwas HCl zu den einzelnen Lösungen zugefügt wird. Ein Kreidekreuz auf dem Experimentiertisch dient als optisches Merkmal für den Schlusspunkt der Messung.

BG1: 20ml Natriumthiosulfatlösung werden mit HCl versetzt

BG2: 20ml Natriumthiosulfatlösung + 20ml Wasser werden mit HCl versetzt

BG3: 20ml Natriumthiosulfatlösung + 40ml Wasser werden mit HCl versetzt

BG4: 20ml Natriumthiosulfatlösung werden auf das doppelte der Raumtemperatur erhöht und mit HCl versetzt

Beobachtung Schlussfolgerung
Konzentrations­abhängigkeit Eine Verringerung der Konzentration um die Hälfte verlangsamt die Reaktionsdauer ca. um die Hälte Je höher die Konzentration, desto eher kommt es zu wirksamen Zusammenstößen zwischen den Thiosulfationen und den Oxoniumionen.  die Reaktionsgeschwindigkeit nimmt zu.
Temperatur­abhängigkeit Eine Erhöhung der Lösungstemperatur beschleunigt die Reaktionsdauer ca. auf ca. das Doppelte. Je höher die Temperatur, desto stärker ist die Eigenbewegung der Teilchen der Lösung (in diesem Fall der S2O32- und der H3O+-Moleküle). Je stärker ihre Eigenbewegung ist, desto eher kommt es zu wirksamen Zusammenstößen zwischen ihnen.  die Reaktionsgeschwindigkeit nimmt zu.

Messung der Reaktionsgeschwindigkeit

Bearbeiten

V: Beispielversuch: Verbrennen von Papier - Messung des entstehenden Kohlenstoffdioxids

Geschwindigkeit der Papierverbrennung

Bestimmung der Reaktionsgeschwindigkeit grafisch:

Bearbeiten

Steigungsdreieck anlegen, abmessen und ausrechnen. Je kleiner das Steigungsdreieck dabei wird desto genauer wird dabei die momentane Geschwindigkeit bestimmt. Die Steigung entspricht der Tangente.

Unter der Reaktionsgeschwindigkeit versteht man die Änderung der Konzentration eines Reaktionsteilnehmers (Δc) in einer bestimmten Zeiteinheit (Δt).

Bei abnehmender Konzentration bekommt der Quotient ein negatives Vorzeichen.

Die momentane Geschwindigkeit:

Exkurs: Geschwindigkeit und ihre Messung in der Physik:

Bearbeiten

a) gleichförmige Bewegung:

Bearbeiten

Geschwindigkeit = Weg / ZeitV = Δs / Δt

Geradensteigung m = Δy/ Δx

b) ungleichförmige Bewegung:

ΔS verändert sich bei konstantem Δt

mittlere Geschwindigkeit = V = Δs / Δt

momentane Geschwindigkeit: lim (t->0) Δs / Δt = ds/dt

In der Chemie haben wir es mit Reaktionen zu tun.

→ Was könnte hier als Zeichen für die Reaktionsgeschwindigkeit ändern ?

Die Konzentrationsabnahme von Edukten bzw. die Konzentrationszunahme der Produkte eigenen sich, um die Reaktionsgeschwindigkeit zu bestimmen. (Entstehen eines Produktes, Verschwinden eines Eduktes). Ersatzweise kann bei Gasreaktionen auch die Zu- bzw. Abnahme des Volumens gemessen werden. (Bei Farbreaktionen kann der Trübungsgrad durch ein Photometer gemessen, verwendet werden.)
Gut geeignet
  • Reaktionen, bei denen ein Gas entsteht
  • Reaktionen mit Farbänderungen
Grundsätzlich kann man die Reaktionsgeschwindigkeit über das Entstehen der Produkte und das „Verschwinden“ der Edukte erfassen.

Die Beeinflussung der Reaktionsgeschwindigkeit

Bearbeiten

a) Einfluss des Verteilungsgrades auf die Reaktionsgeschwindigkeit

Bearbeiten

V: Gleiche Volumina von Alkohol (Spiritus) wird in einer kleinen (oder einem engen Becherglas) und einer großen Verbrennungsschale (bzw. auf dem Lehrertisch) entzündet.

B: Der Alkohol im engen Becherglas brennt deutlich länger.

Warum brennt der Alkohol im Glas länger?

→ Die Kontaktfläche an der die Verbrennung stattfindet, ist im 2. Versuch größer.

Die Kontaktoberfläche Ethanol/Luft ist für die Reaktionsgeschwindigkeit entscheidend.

Sauerstoff kann nur an der Oberfläche an der Verbrennung teilnehmen

S: Die Reaktionsgeschwindigkeit dieser Verbrennung ist von Größe der Flüssigkeitsoberfläche abhängig, an der Luft und Alkohol in Kontakt stehen.

(Grund: O2 kann nur an der Oberfläche mit dem Ethanol reagieren)

Bei Reaktionen, die in einer Phase ablaufen nennt man homogenen Reaktionen. Befinden sich die Reaktionspartner in verschiedenen Phasen, so spricht man von heterogenen Reaktionen. Bei heterogenen Reaktionen wächst die Reaktionsgeschwindigkeit mit zunehmender Oberfläche an der die Reaktionspartner miteinander Kontakt haben.
Aufgaben
  1. Welcher wichtige Umwelteinfluss könnte die Reaktionsgeschwindigkeit noch beeinflussen?
    • Temperatur
  2. Zeichne Kurven der Reaktionsgeschwindigkeit beider Verbrennungen in ein Diagramm

b) Einfluss der Temperatur:

Bearbeiten
RGT-Regel (Reaktionsgeschwindigkeit - Temperatur - Regel) Bei einer Temperaturerhöhung um 10 K (10°C) verdoppelt bis verdreifacht sich die Reaktionsgeschwindigkeit.

Die Ursachen beschreibt die  Maxell-Boltzmann-Verteilung

Aufgaben
  1. Die Reaktion von jeweils einem Mol Wasserstoff und Sauerstoff (Knallgasreaktion) dauert bei Raumtemperatur ca. 108 Jahre, bei 730 °C ca. 10-5 s. Erkläre den Unterschied.

Erklärung für die Temperaturabhängigkeit chemischer Reaktionen

Bearbeiten

Kinetische Energie in Abhängigkeit von der Temperatur

Bearbeiten

Mit zunehmender Temperatur nimmt bei chemischen Reaktionen die Anzahl der Teilchen mit höherem Energiegehalt (=höherer kinetischer Geschwindigkeit) zu. Dadurch nimmt die Anzahl der Zusammenstöße zu. Außerdem sind die Zusammenstöße „stärker“ (also energiereicher).

Bei geringen Temperaturen sind die Zusammenstöße hingegen weniger häufig und oft reicht auch die Energie der Zusammenstöße für einen Wirksame Reaktion nicht aus. So lässt sich ein Gemisch aus Wasserstoff und Sauerstoff lange aufbewahren, ohne dass eine Reaktion stattfindet.

Aktivierungsenergie

Damit im eben genannten Beispiel von Wasserstoff und Sauerstoff eine Reaktion stattfindet, muss ein Energiebetrag beim Zusammentreffen von Teilchen erreicht, bzw. überschritten werden, damit überhaupt eine Reaktion stattfinden kann.

Nur wirksame Zusammenstöße führen zu einer chemischen Reaktion. Zu einem wirksamen Zusammenstoß gehören neben der notwendigen Energie auch die günstigen Orientierung der Reaktionsteilchen.

c) Einfluss der Konzentration auf die Reaktionsgeschwindigkeit

Bearbeiten

- Abnahme der Reaktionsgeschwindigkeit, bei Abnahme der Konzentration (1/2)

Die RG ist von der Konzentration der beteiligten Stoffe abhängig. Je größer die Konzentration ist, desto größer ist auch die mittlere RG.

Messung der Zunahme des Volumens in Abhängigkeit von der Zeit

Bearbeiten

V1: H2O2 und Bromwasser reagieren lassen:

50 ml H2O + 40 mL Bromwasser (Tipp: muss riechen!) dazu 20 mL 5%ige H2O2-Lösung zugeben und sofort in 10 s Abständen messen:

V2: Mg + HCl:[1]

Reagenzglas mit seitlichem Ausgang (!) mit 10ml 2mol HCl und 3g Mg-Band (ca. 5cm) mit Schlauch und Kolbenprober

Zeit t [s] Volumen Vol [ml]
   
   
   
   

Auftragung der Kurve:

Auswertung
  • Die Gasentwicklung verläuft am Anfang schneller als am Ende.
  • Die Reaktionsgeschwindigkeit ist also nicht konstant, sondern ändert sich mit der Zeit.

Reaktionsgleichung:

Die mittlere Reaktionsgeschwindigkeit

Bearbeiten

In der Chemie interessiert uns in erster Linie die mittlere Reaktionsgeschwindigkeit.

Diese ergibt sich als:

Umrechnung auf die umgesetzte Teilchenzahl: 1 mol eines Gases nimmt unter Normalbedingungen (0°C, 101325 Pa = 1013,25 mbar) ein Volumen von 22,41 L ein.

Also ergibt sich für die mittlere Reaktionsgeschwindigkeit:

In unserem Versuch liegt eine heterogene Reaktion mit unterschiedliche Phasen vor!

Homogene Reaktionen laufen jedoch in einer Phase ab. (Beispiel?)

Bei homogenen Reaktionen steht die Teilchenzahl in direktem Zusammenhang mit der Konzentration:

Konzentration:

Für die mittlere Reaktionsgeschwindigkeit gilt hier also:

Reaktionsgeschwindigkeit = Quotient aus der Konzentration eines Reaktionsteilnehmers und dem entsprechenden Zeitabschnitt.

Man kann sie erfassen als Zunahme der Konzentration der Produkte, dann hat sie ein positives Vorzeichen, oder als Abnahme der Konzentration der Edukte, dann hat sie ein negatives Vorzeichen.

Momentane Reaktionsgeschwindigkeit:

Die in einem genügend kleinen Zeitraum gemessene mittlere Reaktionsgeschwindigkeit nennt man momentane Reaktionsgeschwindigkeit. Geschwindigkeit zu genau einem Zeitpunkt.

Zusammenfassung

Bearbeiten
  • Bei Reaktionen reagieren immer Edukte zu Produkten.
  • Die Reaktionsgeschwindigkeit misst man also durch die Entstehung der Produkte oder das „Verschwinden“ der Edukte.
  • Misst man das Verschwinden der Edukte, so erhält die Reaktionsgeschwindigkeit definitionsgemäß ein negatives Vorzeichen.
  • Von Interesse ist für Chemiker besonders die mittlere Reaktionsgeschwindigkeit: vv = ∆V / ∆t
  • Messen lässt sich praktischerweise das Entstehen oder Verschwinden eines Volumens (bei Gasreaktionen) oder die Zunahme oder Abnahme der Stoffmenge (n) eines Teilchens, da die Stoffmenge zum Volumen in direkt proportionaler Beziehung steht: n = V0 / Vm (Vm =22,4 l/mol)
  • Für solche Reaktionen ist die Reaktionsgeschwindigkeit : vn = ∆ n/ ∆ t
  • Als dritte Methode kann die Reaktionsgeschwindigkeit durch die Änderung von Stoffmengenkonzentration (c) gemessen werden (leicht in wässrigen Systemen durch z.B. passende Ionennachweise). Bei solchen Reaktionen ist die Konzentration der Stoffmenge direkt proportional: c = v/V(Lsg.), wobei V(Lsg) als konstant angenommen werden kann. Die Reaktionsgeschwindigkeit ist also vc = ∆ c/ ∆ t.
Aufgaben
  1. Nenne Möglichkeiten Reaktionsgeschwindigkeiten zu messen.
  2. Wovon hängt die Reaktionsgeschwindigkeit ab.
  3. Eine Zinkgranalie und die gleiche Masse an Zinkpulver reagieren Salzsäurea)
    a)Stelle die Reaktionsgleichung auf
    b) Was für ein Reaktionstyp liegt vor?
    c) Wie unterscheiden sich die Reaktionsgeschwindigkeiten
  4. Erkläre den Zusammenhang zwischen Oberfläche (Verteilungsgrad) und der Reaktionsgeschwindigkeit.
  5. Magnesium reagiert mit Salzsäure. Nach 1 min. misst man ein Wasserstoffvolumen von 30 mL.
    a) Stelle die Reaktionsgleichung auf und benenne alle Stoffe
    b) Bestimme die mittlere Reaktionsgeschwindigkeit vr in mol/s
  6. Salzsäure reagiert auch mit Calciumcarbonat. Es bildet sich wiederum ein Gas. Nach 2min. wird eine Massenabnahme von 0,960 g gemessen. Berechne die mittlere Änderung der Stoffmenge des Kohlenstoffdioxids. M(CO2) = 44 g/mol
  7. Die Wasserstoffperoxidkonzentration einer wässrigen Wasserstoffperoxidlösung nimmt bei der folgenden Reaktion ab:
    Es liegen folgende Konzentrationen vor:
    c0 (H2O2) = 0,98 mol/l
    c1 (H2O2) = 0,74 mol/l
    Berechnen Sie den zugehörigen Zeitabschnitt, wenn die mittlere Reaktionsgeschwindigkeit vr = -7,48 mol/l·s im betrachteten Zeitabschnitt ist.

Erklärung für die Konzentrationsabhängigkeit chemischer Reaktionen

Bearbeiten

Voraussetzungen für das Zustandekommen einer Reaktion - die Stoßtheorie

Bearbeiten

Damit Teilchen miteinander reagieren können, müssen diese

  • zusammenstoßen
  • eine genügend hohe Geschwindigkeit haben, um sich auch zu treffen (sie müssen also genug kinetische Energie haben)
  • die richtige räumliche Orientierung haben
A

B

A

B

A

B

Teilchenzahl A: 1
B: 2
A: 2
B: 2
A: 2
B: 3
erfolgversprechende Zusammenstoß­möglichkeiten 1 . 2 = 2 2 . 2 = 4 2 . 3 = 6
Das Aufeinandertreffen von miteinander reagierenden Teilchen ist bei geringer konzentrierten Lösungen unwahrscheinlicher  die Reaktionsgeschwindigkeit ist geringer
Beispiel

(geschwindigkeitsbestimmender Schritt einer Reaktion)

Ist das Zusammentreffen beider Reaktionspartner wichtig, so ergibt sich:

bimolekulare Reaktion

Erhöht man jetzt die Konzentration, also die Dichte der Teilchen, so erhöht sich auch die Reaktionsgeschwindigkeit.

Bei bimolekularen Reaktionen ist die Reaktionsgeschwindigkeit proportional zum Produkt der Konzentration der beiden Edukte.

Herleitung über die Stoßzahl s:

s ~ N(A) · N(B) mit N = n · NA

→ s ~ n(A) · NA · n(B) · NAmit c = n/V <=> n= cV

→ s ~ c(A) · V · NA · c(B) · V · NAmit V, NA = konst

→ s ~ c(A) · c(B)

→ v ~ c(A) · c(B)

v = k · c(A) · c(B)


Weitergehendes Beispiel:

Reaktion A + B → C + D

AABB: 4 Möglichkeiten für Zusammenstöße

AAAABB: 8 Möglichkeiten für Zusammenstöße

AAAABBBB: 16 Möglichkeiten für Zusammenstöße

Bei großen Konzentrationen sind viele Moleküle im Reaktionsgefäß vorhanden. Die Wahrscheinlichkeit für einen Zusammenstoß, bei dem die Moleküle zum Reaktionsprodukt reagieren, ist folglich sehr hoch -> die Reaktion läuft schnell ab. Die Zahl der Zusammenstöße pro Zeiteinheit (also auch die Geschwindigkeit der Reaktion) ist umso größer, je mehr Teilchen in der Volumeneinheit vorhanden sind (=Konzentration).

Die Reaktionsgeschwindigkeit ist damit proportional dem Produkt der Konzentrationen der Stoffe A und B.

k = Geschwindigkeitskonstante
  1. charakteristisch für eine Reaktion
  2. abhängig von der Temperatur)
Die Geschwindigkeitskonstante k ist ein Maß für die Zahl der erfolgreichen Zusammenstöße.
Zusatzinformationen

 Stoßtheorie

Die Reaktionsgeschwindigkeit ist abhängig von:

  • den chemischen Eigenschaften der Reaktionspartner
  • dem Verteilungsgrad (bzw. Oberfläche) und der Durchmischung der Reaktionspartner
  • der Konzentration

Abhängigkeit der Reaktionsgeschwindigkeit von der Konzentration

Bearbeiten
  1. bimolekulare Reaktion:
  2. monomolekulare Reaktion:
  3. bimolekulare Reaktionen mit Gasen (ausgedrückt über Partialdruck p)
    da p ~ c

  1. 37%ige Salzsäure hat eine Konzentration von 12 Mol/L

Reaktionskinetik

Bearbeiten

Nachweis von Ionen

Bearbeiten

Ionen sind für den Menschen in der Regel unsichtbar. Um sie nachzuweisen muss man sie zu einer „sichtbaren“ Form reagieren lassen (z.B. schwerlösliche Salze, farbige Verbindungen oder Gase).

Nachweis durch Fällungsreaktionen oder Farbreaktionen

Bearbeiten

V: Kippe die folgenden Lösungen zusammen und untersuche das Ergebnis

B: In einigen Fällen kommt es zu einer Trübung

KCl K2SO4 AgNO3 CuSO4 BaCl2 K2CrO4 KNO3
KCl x - AgCl ↓ - - - -
K2SO4 x - BaSO4 - -
AgNO3 x - AgCl ↓ Ag2(CrO4)↓ -
CuSO4 x BaSO4 Cu(CrO4) ↓ -
BaCl2 x Ba(CrO4)↓ (gelb) -
K2CrO4 x -
KNO3 x

S: Immer wenn ein Feststoff entstanden ist, lag eine Fällungsreaktion vor. gelöste Ionen haben sich in der Lösung „gefunden“ und ein schwerlösliches Salz gebildet.

Am ehesten kann man Fällungen mit einer Analogie erklären:

Die 10. Klasse fährt im engen Bus ins Schwimmbad. Im Bus sind alle eng zusammen (=Feststoff), im Wasser bewegen sich die Schüler dann wild hin und her. Treffen aber zwei „Verliebte“ aufeinander, so lassen sie sich nicht mehr los und sind (fast) untrennbar miteinander verbunden... ;-)

Wie entsteht ein schwerlösliches Salz?

Bearbeiten

In ein Becherglas werden die festen Salze Natriumsulfat Na2+ SO42- und Bariumchlorid Ba2+Cl2- gegeben. Beide Salze lösen sich auf und zerfallen in ihre nun frei beweglichen Ionen.

Natriumsulfat (aq) + Bariumchlorid (aq) → Bariumsulfat (f) ↓ + Natriumchlorid (aq)
Salze lösen sich meist gut in Wasser. Treffen aber zwei Ionen zusammen, deren Kombination ein schwer lösliches Salz ergibt, so fällt dieses auch sofort als Feststoff aus (erkennbar am Niederschlag → Trübung). Man nennt dies eine Fällungsreaktion. In Reaktionsgleichungen wird das Ausfallen einen Stoffes mit einem ↓ oder einem (s) für solid hinter der Summenformel des Stoffs gekennzeichnet.

Fällungsreaktionen sind als Nachweis für Ionen geeignet. Durch das Verwenden von spezifischen Fällungsreaktionen ist es möglich, einzelne Bestandteile einer Lösung zu identifizieren, also nachzuweisen. Dies ist sehr wichtig zum Nachweis von geringen Ionen Konzentrationen bei chemischen Analysen (Trinkwasseruntersuchung oder Lebensmitteluntersuchung). Fällungsreaktionen können auch zum Ausfällen von störenden Ionen verwendet werden, z.B. bei der Reinigung von Klärwasser in der chemischen Stufe der Kläranlage verwendet werden.

Übersicht über verschiedene Ionennachweise

Bearbeiten

Nachweis von Cl--Ionen

Bearbeiten

Nachweis durch: Zugabe von Ag+ - Ionen Lösung (z.B. AgNO3)

Beispiel: Cl-(aq) + Ag+(aq) → Ag+Cl-(s)[1]

Nachweis → weißer Niederschlag

Nachweis von Ag+-Ionen

Bearbeiten

Zum Nachweis von Silberionen verfährt man entsprechend umgekehrt

Nachweis von SO42--Ionen

Bearbeiten

Nachweis durch:Zugabe von Ba2+ Ionenlösung


Beispiel:Ba2+(aq) + SO42-(aq) → Ba2+SO42- (s) ↓

Nachweis → weißer Niederschlag

Nachweis von Ba2+-Ionen

Bearbeiten

Zum Nachweis von Bariumionen verfährt man entsprechend umgekehrt

Nachweis von Fe3+-Ionen

Bearbeiten

Nachweis durch: Zugabe von Cyanatlösung (z.B: Kaliumthiocyanatlösung)

Reaktion: Fe3+(aq) + 3 SCN-(aq) → Fe3+(SCN-)3

Nachweis → Keine Fällungsreaktion! → tiefrot

Nachweis von Cu2+-Ionen

Bearbeiten

Nachweis durch: Zugabe von Ammoniak oder Ammoniakwasser

Reaktion: Cu2+ + 4 NH3 → [Cu(NH3)4]2+

Nachweis → tiefblaue Farbe (=Kupfertetraminkomplex)

Keine Fällungsreaktion! Komplexreaktion!

Nachweis von CO32--Ionen

Bearbeiten

Nachweis durch: bei Säurezugabe entsteht Kohlenstoffdioxid, welches als Gas oft am Zischen erkennbar ist.

Reaktion: 2 HCl + CO32- → H2CO3 + 2 Cl- → CO2 + H2O

Nachweis → Die Lösung schäumt stark auf. (CO2-Bildung)

Keine Fällungsreaktion!

Tabellarische Übersicht über wichtige Nachweisreaktionen

Bearbeiten
Nachzuweisender Soff mögl. Nachweissubstanz Nachweis durch Bildung von:
Ag+ NaCl, KCl AgCl weißer NS
Ba2+ K2SO4 BaSO4 weißer NS
Cu2+ K2CrO4 CuCrO4 grüner NS
Cu2+ NH3 Cu[NH3]4 tiefblaue Farbe
Fe3+ KSCN FeSCN3 tiefrote Farbe
CO32- HCl CO2 aufschäumen
Cl- AgNO3 AgCl weißer NS
SO4- BaCl2 BaSO4 weißer NS
CrO42- BaCl2 BaCrO4 gelber NS
H2 O2 (Knallgasprobe) H2O Knall
O2 C (Glimmspanprobe) Glimmen
CO2 Ca(OH)2 (Kalkwasser) CaCO3 weißer NS

Weitere Nachweise

Bearbeiten

Analysemethoden zum Nachweis von Ionen und Molekülen (z.B. Photometrie)

Zusatzinformationen

  1. Der Pfeil ↓ bedeutet, dass dieser Feststoff ausfällt, d.h. sich am Boden abscheidet.

Löslichkeit von Salzen und das Löslichkeitsprodukt

Bearbeiten

Das Löslichkeitsprodukt

Bearbeiten

Viele Stoffe, wie z.B. die Mehrheit der Salze löst sich in Wasser (mehr oder weniger gut[1]). Nimmt man aber eine zu große Menge, löst sich nicht das ganze Salz auf, sondern es bleibt ein Bodenkörper zurück. Bei schwerlöslichen Salzen kann man diesen oft schon bei geringen Mengen des zugegebenen Salzes erkennen. Eine solche Lösung, bezeichnet man als gesättigt.

Zwischen einem solchen Bodenkörper und der darüber befindlichen Lösung liegt ebenfalls ein Gleichgewicht vor. Es handelt sich um den permanenten Übergang von Ionen aus dem festen Salzkristall in ihre hydratisierte (also gelöste) Form und umgekehrt.

Am Beispiel des schwerlöslichen Salzes Silberchlorid wollen wir mal genauer hinschauen

Heterogenes Gleichgewicht der zwei Phasen

Bodenkörper / Lösung

Da sich die Konzentration des Bodenkörpers in einem enormen Überschuss befindet und obendrein konstant ist, kann sie mit der Konstanten des MWG verrechnet werden:

Kc · [AgCl] = [Ag+] · [Cl-]= L = Löslichkeitsprodukt (=maximale Ionenkonzentration)

Das Produkt der Ionenkonzentrationen einer gesättigten Salzlösung nennt man Löslichkeitsprodukt. Es gibt an, wie viel Salz, bei einer bestimmten Temperatur maximal gelöst sein kann. Dabei gilt, je kleiner das Löslichkeitsprodukt ist, desto schwerer löst sich ein Salz auf.

Nützliche Aussagen des Löslichkeitproduktes:

Man kann nun berechnen, wie viel Salz sich jeweils in einer Lösung löst, so dass kein Bodenkörper entsteht, bzw. genau berechnen, wie viel Salz zugegeben werden muss, damit sich ein Bodenkörper bildet:

Bei Lösungsvorgängen fällt immer dann ein Feststoff aus, wenn das Produkt der gelösten Ionenkonzentrationen größerer als das Löslichkeitsprodukt wird.

Löslichkeit und Temperatur

Bearbeiten
Erhitzen führt zu einer schnelleren Einstellung des GGW, aber auch zu einer Verschiebung und zu einer Änderung der Gleichgewichtskonstanten. Ein Katalysator beschleunigt die Reaktion ohne Veränderung der Gleichgewichtskonstanten.

Aufgaben zum Löslichkeitsprodukt

Bearbeiten

Silberchlorid

Bearbeiten

Silberchlorid gilt als schwerlösliches Salz, es ist allerdings nicht völlig unlöslich. Ein geringer Anteil löst sich immer. Bei 25°C lösen sich beispielsweise 0,0019g AgCl in einem Liter Wasser.

a) Bestimme die Stoffmenge und die Konzentration der Lösung.

b) Bestimme das Löslichkeitsprodukt.

Notwendige Formeln
Lösungsweg

Ziel: Einsetzen der Silberionen- und der Chloridionenkonzentration in das Löslichkeitsprodukt und so L ausrechnen.

1. Schritt: Um die Konzentrationen zu berechnen, die ja zum Einsetzen in das Löslichkeitsprodukt notwendig sind, benötigt man die Stoffmenge der Silberionen und der Chloridionen. An diese gelangt man durch die Stoffmenge an AgCl:

M (AgCl) ← aus dem PSE ablesen: M(Ag) = 107,9 g/mol + M(Cl)= 35,5 g/mol = M(AgCl) = 143,4 g/mol

2. Schritt: Aus der Reaktionsgleichung folgt das Verhältnis der Ionen zum Feststoff:

Würden sich also z.B. 1 mol AgCl auflösen, so würden jeweils 1 mol Ag+ und 1mol Cl- bilden. Da nun in unserem Beispiel 1,32 · 10-5 mol AgCl aufgelöst werden, liegen auch 1,32 · 10-5 mol Ag+ und 1,32 · 10-5 mol Cl- vor.

3. Schritt - Berechnen der Konzentrationen:

Da die Aufgabe von einem Liter ausgeht, ist die Stoffmenge gleich der Konzentration:

4. Schritt: Einsetzen in die Formel des Löslichkeitsproduktes

[Ag+] · [Cl-] = L

[1,32 · 10-5 mol/l] · [1,32 · 10-5 mol/l] = 1,74 10-10 mol2/l2

Bariumsulfat

Bearbeiten

Bei 25°C sind von einer gesättigten Bariumsulfatlösung 1,04 · 10-5 mol/l der Ba2+-Ionen gelöst. Berechne das Löslichkeitsprodukt

Lösung

BaSO4 (s) ⇌ Ba2+(aq) + (SO4)2-(aq)

Da die Konzentrationen von Ba2+ und SO42- im Gleichgewicht ja gleich sind gilt:

KL (BaSO4) = [Ba2+] · [(SO4)2-]

Also wäre KL ja das Quadrat der Ba2+ Konzentration.

K = 1,08 · 10-10 mol2/l2

Löslichkeitsprodukte

Bearbeiten

Wiederholungsaufgaben

Bearbeiten
Reaktionskinetik
Geschwindigkeit von Reaktionen
  1. Nenne Kennzeichen einer chemischen Reaktionen
  2. Erstelle für jeweils frei gewählte Reaktionen ein exothermes und ein endothermes Energiediagramm
  3. Was versteht man unter Enthalpie und Entropie?
  4. Wie unterscheiden sich Standard- und Normalbedingungen?
  5. Was versteht man unter Reaktionsgeschwindigkeit?
  6. Welche Faktoren beeinflussen die Reaktionsgeschwindigkeit?
  7. Wie unterscheiden sich mittlere und momentane Reaktionsgeschwindigkeit?
  8. Erkläre die Faktoren mit einer Modellvorstellung der wirksamen Zusammenstöße.
  9. Wie kann man die Reaktionsgeschwindigkeit messen? Nenne verschiedene praktische Möglichkeiten.
  10. Eine Zinkgranalie und die gleiche Masse an Zinkpulver reagieren Salzsäure. Stelle die Reaktionsgleichung auf und finde Wege die Reaktionsgeschwindigkeit zu bestimmen.
  11. Magnesium reagiert mit Salzsäure. Nach 1min. misst man ein Wasserstoffvolumen von 30ml.
    a) Stelle die Reaktionsgleichung auf und benenne alle Stoffe
    b) Bestimme die mittlere Reaktionsgeschwindigkeit vr in mol/s
  12. Salzsäure reagiert auch mit Calciumcarbonat. Es bildet sich wiederum ein Gas. Nach 2min. wird eine Massenabnahme von 0,960g gemessen. Berechne die mittlere Änderung der Stoffmenge des Kohlenstoffdioxids. M(CO2) = 44 g/mol
  13. Die Wasserstoffperoxidkonzentration einer wässrigen Wasserstoffperoxidlösung nimmt bei der folgenden Reaktion ab: 2 H2O2 → 2 H2O + O2. Es liegen folgende Konzentrationen vor: c0 (H2O2) = 0,98 mol/l // c1 (H2O2) = 0,74 mol/l Berechne den zugehörigen Zeitabschnitt, wenn die mittlere Reaktionsgeschwindigkeit vr = - 7,48 mol /l·s im betrachteten Zeitabschnitt ist.
  14. Welchen Einfluss haben Katalysatoren auf die Reaktionsgeschwindigkeit?
Analytik und Ionennachweise
  1. Was ist eine Fällungsreaktion? Was ist ein schwerlösliches Salz?
  2. Welche Eigenschaft eines Salzes macht es schwerlöslich?
  3. Wie kann man Fällungsreaktionen für analytische Nachweise einsetzen?
  4. Nenne Nachweise für Chloridionen, Sulfationen, Eisenionen und Kupferionen. Wie funktionieren sie jeweils?
  5. Nenne mindestens 4 weitere Nachweise.
Das chemische Gleichgewicht
  1. Erkläre das Eisenthiocyanatgleichgewicht.
  2. Definiere chemisches Gleichgewicht.
  3. Warum kann man sagen das chemische Gleichgewichtsreaktionen äußerlich zum Stillstand gekommen sind?
  4. Warum sind chemische Gleichgewichte dynamisch?
  5. Nenne das Prinzip von Le Chatellier
  6. Nenne zu jeder der vier Arten von Gleichgewichtsreaktionen je ein Beispiel: (Lösungsgleichgewicht, Gasgleichgewicht, Säure-Base-Gleichgewicht, Redox-Gleichgewicht).
  7. Erkläre das Chromat/ Dichromatgleichgewicht genau.
  8. Erkläre das Stickoxidgleichgewicht genau.
  9. Das Iodwasserstoffgleichgewicht ist ein gutes Beispiel für Le Chatellier. Wende sein Prinzip auf dieses Gleichgewicht an und erkläre Auswirkungen, wenn man Druck bzw. Temperatur verändert.
  10. Was ist das MWG?= Wie stallt man es auf und welche Aussage trifft K?
  11. Erkläre warum Mineralwasser in einer Sprudelflasche nach einiger Zeit kein „Sprudel“ mehr enthält.
  12. Fasse zusammen: Wie kann man ein Gleichgewicht verschieben?
  13. Erkläre das Gasgleichgewicht in den Lungenbläschen, welches zwischen Luftsauerstoff und gelöstem Sauerstoff im Blut herrscht.
  14. Beschreibe die Ammoniaksynthese. Bei welchen Bedingungen findet sie statt? Warum gerade bei diesen Bedingungen?
  15. Beschreibe das Boudouard-Gleichgewicht.
  16. Welche Gleichgewichte spielen bei der Produktion von Schwefelsäure ein Rolle?
  17. Rechne alle Gleichgewichtsaufgaben im Buch
  18. Welche der folgenden Reaktionen reagiert (und in welcher Weise) auf eine Veränderung des Volumens?
    C + CO2 ⇌ 2CO
    CH4 + H2O ⇌ CO + 3H2
    CO + NO2 ⇌ CO2 + NO
    CaCO3 ⇌ CaO + CO2
    2CH4+ O2 + 4N2 ⇌ 2CO + 4H2 + 4N2
    2NO + O2 ⇌ 2NO2
    CO + H2O ⇌ CO2 + H2
Löslichkeit von Salzen
  1. Was versteht man unter einem Löslichkeitsgleichgewicht?
  2. Wie berechnet man KL?
  3. Begründe, warum die Löslichkeit von Salzen Temperaturabhängig ist
  4. Nenne die Formel zu Berechnung der Stoffmenge und die Formel zur Berechnung der Konzentration.
  5. Wie kann man an KL ablesen, ob ein Salz bei einer bestimmten Konzentration als Feststoff ausfällt?

  1. Nitrate lösen sich beispielsweise immer recht gut auf


Lizenzbestimmungen

Bearbeiten

Creative Commons Attribution Share-Alike 3.0 Unported

Bearbeiten

Diese "Commons Deed" ist lediglich eine vereinfachte Zusammenfassung des rechtsverbindlichen Lizenzvertrages (Abschnitt "License") in allgemeinverständlicher Sprache.

Sie dürfen:

  • das Werk bzw. den Inhalt vervielfältigen, verbreiten und öffentlich zugänglich machen
  • Abwandlungen und Bearbeitungen des Werkes bzw. Inhaltes anfertigen

Zu den folgenden Bedingungen:

  • Namensnennung — Sie müssen den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
  • Weitergabe unter gleichen Bedingungen — Wenn Sie das lizenzierte Werk bzw. den lizenzierten Inhalt bearbeiten, abwandeln oder in anderer Weise erkennbar als Grundlage für eigenes Schaffen verwenden, dürfen Sie die daraufhin neu entstandenen Werke bzw. Inhalte nur unter Verwendung von Lizenzbedingungen weitergeben, die mit denen dieses Lizenzvertrages identisch, vergleichbar oder kompatibel sind.

Wobei gilt:

  • Verzichtserklärung — Jede der vorgenannten Bedingungen kann aufgehoben werden, sofern Sie die ausdrückliche Einwilligung des Rechteinhabers dazu erhalten.
  • Sonstige Rechte — Die Lizenz hat keinerlei Einfluss auf die folgenden Rechte:
  • Die gesetzlichen Schranken des Urheberrechts und sonstigen Befugnisse zur privaten Nutzung;
  • Das Urheberpersönlichkeitsrecht des Rechteinhabers;
  • Rechte anderer Personen, entweder am Lizenzgegenstand selber oder bezüglich seiner Verwendung, zum Beispiel Persönlichkeitsrechte abgebildeter Personen.

Haftungsbeschränkung

Die „Commons Deed“ ist kein Lizenzvertrag. Sie ist lediglich ein Referenztext, der den zugrundeliegenden Lizenzvertrag übersichtlich und in allgemeinverständlicher Sprache aber auch stark vereinfacht wiedergibt. Die Deed selbst entfaltet keine juristische Wirkung und erscheint im eigentlichen Lizenzvertrag nicht.

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM ITS USE.}}

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

Bearbeiten
  1. "Adaptation" means a work based upon the Work, or upon the Work and other pre-existing works, such as a translation, adaptation, derivative work, arrangement of music or other alterations of a literary or artistic work, or phonogram or performance and includes cinematographic adaptations or any other form in which the Work may be recast, transformed, or adapted including in any form recognizably derived from the original, except that a work that constitutes a Collection will not be considered an Adaptation for the purpose of this License. For the avoidance of doubt, where the Work is a musical work, performance or phonogram, the synchronization of the Work in timed-relation with a moving image ("synching") will be considered an Adaptation for the purpose of this License.
  2. "Collection" means a collection of literary or artistic works, such as encyclopedias and anthologies, or performances, phonograms or broadcasts, or other works or subject matter other than works listed in Section 1(f) below, which, by reason of the selection and arrangement of their contents, constitute intellectual creations, in which the Work is included in its entirety in unmodified form along with one or more other contributions, each constituting separate and independent works in themselves, which together are assembled into a collective whole. A work that constitutes a Collection will not be considered an Adaptation (as defined below) for the purposes of this License.
  3. "Creative Commons Compatible License" means a license that is listed at http://creativecommons.org/compatiblelicenses that has been approved by Creative Commons as being essentially equivalent to this License, including, at a minimum, because that license: (i) contains terms that have the same purpose, meaning and effect as the License Elements of this License; and, (ii) explicitly permits the relicensing of adaptations of works made available under that license under this License or a Creative Commons jurisdiction license with the same License Elements as this License.
  4. "Distribute" means to make available to the public the original and copies of the Work or Adaptation, as appropriate, through sale or other transfer of ownership.
  5. "License Elements" means the following high-level license attributes as selected by Licensor and indicated in the title of this License: Attribution, ShareAlike.
  6. "Licensor" means the individual, individuals, entity or entities that offer(s) the Work under the terms of this License.
  7. "Original Author" means, in the case of a literary or artistic work, the individual, individuals, entity or entities who created the Work or if no individual or entity can be identified, the publisher; and in addition (i) in the case of a performance the actors, singers, musicians, dancers, and other persons who act, sing, deliver, declaim, play in, interpret or otherwise perform literary or artistic works or expressions of folklore; (ii) in the case of a phonogram the producer being the person or legal entity who first fixes the sounds of a performance or other sounds; and, (iii) in the case of broadcasts, the organization that transmits the broadcast.
  8. "Work" means the literary and/or artistic work offered under the terms of this License including without limitation any production in the literary, scientific and artistic domain, whatever may be the mode or form of its expression including digital form, such as a book, pamphlet and other writing; a lecture, address, sermon or other work of the same nature; a dramatic or dramatico-musical work; a choreographic work or entertainment in dumb show; a musical composition with or without words; a cinematographic work to which are assimilated works expressed by a process analogous to cinematography; a work of drawing, painting, architecture, sculpture, engraving or lithography; a photographic work to which are assimilated works expressed by a process analogous to photography; a work of applied art; an illustration, map, plan, sketch or three-dimensional work relative to geography, topography, architecture or science; a performance; a broadcast; a phonogram; a compilation of data to the extent it is protected as a copyrightable work; or a work performed by a variety or circus performer to the extent it is not otherwise considered a literary or artistic work.
  9. "You" means an individual or entity exercising rights under this License who has not previously violated the terms of this License with respect to the Work, or who has received express permission from the Licensor to exercise rights under this License despite a previous violation.
  10. "Publicly Perform" means to perform public recitations of the Work and to communicate to the public those public recitations, by any means or process, including by wire or wireless means or public digital performances; to make available to the public Works in such a way that members of the public may access these Works from a place and at a place individually chosen by them; to perform the Work to the public by any means or process and the communication to the public of the performances of the Work, including by public digital performance; to broadcast and rebroadcast the Work by any means including signs, sounds or images.
  11. "Reproduce" means to make copies of the Work by any means including without limitation by sound or visual recordings and the right of fixation and reproducing fixations of the Work, including storage of a protected performance or phonogram in digital form or other electronic medium.

2. Fair Dealing Rights

Bearbeiten

Nothing in this License is intended to reduce, limit, or restrict any uses free from copyright or rights arising from limitations or exceptions that are provided for in connection with the copyright protection under copyright law or other applicable laws.

3. License Grant

Bearbeiten

Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) license to exercise the rights in the Work as stated below:

  1. to Reproduce the Work, to incorporate the Work into one or more Collections, and to Reproduce the Work as incorporated in the Collections;
  2. to create and Reproduce Adaptations provided that any such Adaptation, including any translation in any medium, takes reasonable steps to clearly label, demarcate or otherwise identify that changes were made to the original Work. For example, a translation could be marked "The original work was translated from English to Spanish," or a modification could indicate "The original work has been modified.";
  3. to Distribute and Publicly Perform the Work including as incorporated in Collections; and,
  4. to Distribute and Publicly Perform Adaptations.
  5. For the avoidance of doubt:
    1. Non-waivable Compulsory License Schemes. In those jurisdictions in which the right to collect royalties through any statutory or compulsory licensing scheme cannot be waived, the Licensor reserves the exclusive right to collect such royalties for any exercise by You of the rights granted under this License;
    2. Waivable Compulsory License Schemes. In those jurisdictions in which the right to collect royalties through any statutory or compulsory licensing scheme can be waived, the Licensor waives the exclusive right to collect such royalties for any exercise by You of the rights granted under this License; and,
    3. Voluntary License Schemes. The Licensor waives the right to collect royalties, whether individually or, in the event that the Licensor is a member of a collecting society that administers voluntary licensing schemes, via that society, from any exercise by You of the rights granted under this License.

The above rights may be exercised in all media and formats whether now known or hereafter devised. The above rights include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. Subject to Section 8(f), all rights not expressly granted by Licensor are hereby reserved.

4. Restrictions

Bearbeiten

The license granted in Section 3 above is expressly made subject to and limited by the following restrictions:

  1. You may Distribute or Publicly Perform the Work only under the terms of this License. You must include a copy of, or the Uniform Resource Identifier (URI) for, this License with every copy of the Work You Distribute or Publicly Perform. You may not offer or impose any terms on the Work that restrict the terms of this License or the ability of the recipient of the Work to exercise the rights granted to that recipient under the terms of the License. You may not sublicense the Work. You must keep intact all notices that refer to this License and to the disclaimer of warranties with every copy of the Work You Distribute or Publicly Perform. When You Distribute or Publicly Perform the Work, You may not impose any effective technological measures on the Work that restrict the ability of a recipient of the Work from You to exercise the rights granted to that recipient under the terms of the License. This Section 4(a) applies to the Work as incorporated in a Collection, but this does not require the Collection apart from the Work itself to be made subject to the terms of this License. If You create a Collection, upon notice from any Licensor You must, to the extent practicable, remove from the Collection any credit as required by Section 4(c), as requested. If You create an Adaptation, upon notice from any Licensor You must, to the extent practicable, remove from the Adaptation any credit as required by Section 4(c), as requested.
  2. You may Distribute or Publicly Perform an Adaptation only under the terms of: (i) this License; (ii) a later version of this License with the same License Elements as this License; (iii) a Creative Commons jurisdiction license (either this or a later license version) that contains the same License Elements as this License (e.g., Attribution-ShareAlike 3.0 US)); (iv) a Creative Commons Compatible License. If you license the Adaptation under one of the licenses mentioned in (iv), you must comply with the terms of that license. If you license the Adaptation under the terms of any of the licenses mentioned in (i), (ii) or (iii) (the "Applicable License"), you must comply with the terms of the Applicable License generally and the following provisions: (I) You must include a copy of, or the URI for, the Applicable License with every copy of each Adaptation You Distribute or Publicly Perform; (II) You may not offer or impose any terms on the Adaptation that restrict the terms of the Applicable License or the ability of the recipient of the Adaptation to exercise the rights granted to that recipient under the terms of the Applicable License; (III) You must keep intact all notices that refer to the Applicable License and to the disclaimer of warranties with every copy of the Work as included in the Adaptation You Distribute or Publicly Perform; (IV) when You Distribute or Publicly Perform the Adaptation, You may not impose any effective technological measures on the Adaptation that restrict the ability of a recipient of the Adaptation from You to exercise the rights granted to that recipient under the terms of the Applicable License. This Section 4(b) applies to the Adaptation as incorporated in a Collection, but this does not require the Collection apart from the Adaptation itself to be made subject to the terms of the Applicable License.
  3. If You Distribute, or Publicly Perform the Work or any Adaptations or Collections, You must, unless a request has been made pursuant to Section 4(a), keep intact all copyright notices for the Work and provide, reasonable to the medium or means You are utilizing: (i) the name of the Original Author (or pseudonym, if applicable) if supplied, and/or if the Original Author and/or Licensor designate another party or parties (e.g., a sponsor institute, publishing entity, journal) for attribution ("Attribution Parties") in Licensor's copyright notice, terms of service or by other reasonable means, the name of such party or parties; (ii) the title of the Work if supplied; (iii) to the extent reasonably practicable, the URI, if any, that Licensor specifies to be associated with the Work, unless such URI does not refer to the copyright notice or licensing information for the Work; and (iv) , consistent with Section 3(b), in the case of an Adaptation, a credit identifying the use of the Work in the Adaptation (e.g., "French translation of the Work by Original Author," or "Screenplay based on original Work by Original Author"). The credit required by this Section 4(c) may be implemented in any reasonable manner; provided, however, that in the case of a Adaptation or Collection, at a minimum such credit will appear, if a credit for all contributing authors of the Adaptation or Collection appears, then as part of these credits and in a manner at least as prominent as the credits for the other contributing authors. For the avoidance of doubt, You may only use the credit required by this Section for the purpose of attribution in the manner set out above and, by exercising Your rights under this License, You may not implicitly or explicitly assert or imply any connection with, sponsorship or endorsement by the Original Author, Licensor and/or Attribution Parties, as appropriate, of You or Your use of the Work, without the separate, express prior written permission of the Original Author, Licensor and/or Attribution Parties.
  4. Except as otherwise agreed in writing by the Licensor or as may be otherwise permitted by applicable law, if You Reproduce, Distribute or Publicly Perform the Work either by itself or as part of any Adaptations or Collections, You must not distort, mutilate, modify or take other derogatory action in relation to the Work which would be prejudicial to the Original Author's honor or reputation. Licensor agrees that in those jurisdictions (e.g. Japan), in which any exercise of the right granted in Section 3(b) of this License (the right to make Adaptations) would be deemed to be a distortion, mutilation, modification or other derogatory action prejudicial to the Original Author's honor and reputation, the Licensor will waive or not assert, as appropriate, this Section, to the fullest extent permitted by the applicable national law, to enable You to reasonably exercise Your right under Section 3(b) of this License (right to make Adaptations) but not otherwise.

5. Representations, Warranties and Disclaimer

Bearbeiten

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability.

Bearbeiten

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

Bearbeiten
  1. This License and the rights granted hereunder will terminate automatically upon any breach by You of the terms of this License. Individuals or entities who have received Adaptations or Collections from You under this License, however, will not have their licenses terminated provided such individuals or entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License.
  2. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the applicable copyright in the Work). Notwithstanding the above, Licensor reserves the right to release the Work under different license terms or to stop distributing the Work at any time; provided, however that any such election will not serve to withdraw this License (or any other license that has been, or is required to be, granted under the terms of this License), and this License will continue in full force and effect unless terminated as stated above.

8. Miscellaneous

Bearbeiten
  1. Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor offers to the recipient a license to the Work on the same terms and conditions as the license granted to You under this License.
  2. Each time You Distribute or Publicly Perform an Adaptation, Licensor offers to the recipient a license to the original Work on the same terms and conditions as the license granted to You under this License.
  3. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity or enforceability of the remainder of the terms of this License, and without further action by the parties to this agreement, such provision shall be reformed to the minimum extent necessary to make such provision valid and enforceable.
  4. No term or provision of this License shall be deemed waived and no breach consented to unless such waiver or consent shall be in writing and signed by the party to be charged with such waiver or consent.
  5. This License constitutes the entire agreement between the parties with respect to the Work licensed here. There are no understandings, agreements or representations with respect to the Work not specified here. Licensor shall not be bound by any additional provisions that may appear in any communication from You. This License may not be modified without the mutual written agreement of the Licensor and You.
  6. The rights granted under, and the subject matter referenced, in this License were drafted utilizing the terminology of the Berne Convention for the Protection of Literary and Artistic Works (as amended on September 28, 1979), the Rome Convention of 1961, the WIPO Copyright Treaty of 1996, the WIPO Performances and Phonograms Treaty of 1996 and the Universal Copyright Convention (as revised on July 24, 1971). These rights and subject matter take effect in the relevant jurisdiction in which the License terms are sought to be enforced according to the corresponding provisions of the implementation of those treaty provisions in the applicable national law. If the standard suite of rights granted under applicable copyright law includes additional rights not granted under this License, such additional rights are deemed to be included in the License; this License is not intended to restrict the license of any rights under applicable law.
Creative Commons Notice
Bearbeiten

Creative Commons is not a party to this License, and makes no warranty whatsoever in connection with the Work. Creative Commons will not be liable to You or any party on any legal theory for any damages whatsoever, including without limitation any general, special, incidental or consequential damages arising in connection to this license. Notwithstanding the foregoing two (2) sentences, if Creative Commons has expressly identified itself as the Licensor hereunder, it shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the Work is licensed under the CCPL, Creative Commons does not authorize the use by either party of the trademark "Creative Commons" or any related trademark or logo of Creative Commons without the prior written consent of Creative Commons. Any permitted use will be in compliance with Creative Commons' then-current trademark usage guidelines, as may be published on its website or otherwise made available upon request from time to time. For the avoidance of doubt, this trademark restriction does not form part of the License.

Creative Commons may be contacted at http://creativecommons.org/.

GNU Free Documentation License

Bearbeiten

Version 1.2, November 2002

Copyright (C) 2000,2001,2002  Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.
C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.
K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.
O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties--for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.


P

Fußnoten

Bearbeiten