Grundbegriffe

Bearbeiten

Die Vektoranalysis wendet die Methoden der Analysis (Differential- und Integralrechnung) auf mathematische Funktionen an, in denen Vektoren auftreten, die sich in Abhängigkeit von Ort und Zeit verändern können. Die wichtigsten Anwendungsgebiete der Vektoranalysis sind physikalische Felder, insbesondere elektromagnetische Felder.


Physikalische Felder

Bearbeiten

sind Teilgebiete des Raumes  , in denen jedem Punkt eindeutig ein Skalar oder ein Vektor (auch ein Tensor oder Spinor) zugeordnet ist. Je nach Art der »Feldgröße« spricht man von einem Skalarfeld oder einem Vektorfeld.

Skalare Feldgrößen sind z. B. Druck, Temperatur, Beleuchtungsstärke, Potential.

Vektorielle Feldgrößen sind z. B. elektrische und magnetische Feldstärke, magnetische Induktion, Strömungsgeschwindigkeit.

Kraftfelder sind Felder, in denen z. B. eine elektrische Ladung oder eine Masse eine Kraft erfährt.

Elektrodynamische Felder sind zeitlich veränderliche elektrische und magnetische Felder, in denen Induktionsvorgänge stattfinden.

Feldlinien sind (gedachte) Linien dergestalt, dass die Vektoren der Feldgröße ihre Tangenten sind. Bekannte Beispiele sind: Stromlinien, elektrische und magnetische Feldlinien.

 

Vektorfunktionen

Bearbeiten

Zur Schreibweise: Im Text werden – der deutschen Norm folgend – die Zeichen für Vektoren (V) kursiv und fett geschrieben. In den mit TeX gesetzten Formeln sind die Zeichen mit einem Pfeil versehen.

Für die Beschreibung eines Vektors durch seine kartesischen Komponenten sind drei Schreibweisen üblich: Mittels der Einheitsvektoren i, j, k auf der X-, Y- und Z-Achse, als einzeilige Matrix und als einspaltige Matrix.


 


Ich werde diese Schreibweisen je nach Zweckmäßigkeit abwechselnd verwenden.


Eine Funktion, bei der die abhängige Variable ein Vektor ist, heißt Vektorfunktion. Im einfachsten Fall sind die (skalaren) kartesischen Komponenten Vx, Vy, Vz des Vektors Funktionen einer einzigen Variablen u (einparametrige Vektorfunktion).


 


Ableitung einer Vektorfunktion

Bearbeiten

Analog zur Definition der Ableitung einer skalaren Funktion ist die Ableitung einer Vektorfunktion V(u) definiert:


 


Durch Zerlegung des Vektors V in seine kartesischen Komponenten folgt daraus:


 

mit


 


Daraus ergibt sich schließlich


 


Die Ableitung des Vektors V(u) nach u ist als Summe dreier Vektoren wieder ein Vektor.

Ist insbesondere der Vektor V der vom Ursprung O des Koordinatensystems ausgehende »Ortsvektor«    eines Punktes P(x, y, z), so gilt


 


Bewegt sich der Punkt P irgendwie im Raum und sind seine Koordinaten differenzierbare Funktionen der Zeit t, so ist


 


und


 


Nun sind aber dx/dt, dy/dt und dz/dt die Geschwindigkeiten der Projektionen des Punktes P auf die Achsen:


 


und daher


 


Dieser Vektor aber ist nichts anderes als der Geschwindigkeitsvektor von P, also ist


 

Analog ergibt sich der Vektor a der Beschleunigung des Punktes P:


 

 

Differentiationsregeln

Bearbeiten

Analog beweist man folgende Regeln:


1. Die Ableitung des Produkts einer skalaren Funktion f(u) und eines konstanten Vektors V



 


2. Die Ableitung eines konstanten Vektors ist null.


3. Die Ableitung der Summe und Differenz zweier Vektoren:


 


4. Weitere Differentiationsregeln:


 


 


 


 

 

Beispiel

Bearbeiten

Der Ortsvektor r eines Punktes P sei


 


Wenn φ alle reellen Zahlenwerte annimmt, durchläuft der Punkt P eine Schraubenlinie mit dem Radius a und der Ganghöhe h. Die Ableitung dieser Vektorfunktion ist der Vektor


 


Setzen wir


 


wobei t die Zeit sein soll, so hat P die konstante Winkelgeschwindigkeit ω und den Geschwindigkeitsvektor


 

 

Anwendungen auf die Differentialgeometrie der Raumkurven

Bearbeiten

Tangente, Tangentenvektor, Tangenteneinheitsvektor einer Raumkurve

Bearbeiten

Analog zu den ebenen Kurven wird definiert:

Die Tangente an eine Raumkurve mit dem Ortsvektor r(u) in einem ihrer Punkte P ist die Gerade durch P mit derselben Richtung wie der Vektor (dr/du)P (das bedeutet: die Vektorfunktion dr/du gebildet an der Stelle P).

Dabei ist u irgendeine Variable, durch die r beschrieben wird.


Diese Definition wird sofort plausibel, wenn wir die Variable u durch die Zeit t ersetzen. Dann ist (siehe oben):


 


Der Geschwindigkeitsvektor v gibt aber die momentane Bewegungsrichtung des Punktes P an, und das ist die Richtung der Kurventangente.

Führen wir nun wieder die beliebige Variable u ein, dann wird


 


wobei dt/du lediglich ein skalarer Faktor ist, der an der Richtung des Vektors v nichts ändert. Also hat auch der Vektor   die Richtung von v und damit die Richtung der Tangente.

Für das Folgende brauchen wir den auf der Kurventangente gelegenen Einheitsvektor. Er wird mit t bezeichnet. Man findet ihn, indem man den Geschwindigkeitsvektor durch seinen Betrag dividiert:


 


wobei v die Bahngeschwindigkeit des Punktes P ist. Ist r als Funktion der Bogenlänge s der Kurve gegeben, wobei s von einem beliebigen Punkt der Kurve aus gemessen wird, dann kann man v durch ds/dt ersetzen:


 


 

 

Schmiegungsebene und Krümmung einer Raumkurve

Bearbeiten

Es ist nützlich, sich zunächst die analogen Überlegungen und Begriffe bei einer ebenen Kurve zu vergegenwärtigen. Dort liegen selbstverständlich auch alle Kurventangenten in derselben Ebene, der Ebene der Kurve. Ändert sich die Richtung der Tangente (ihr Winkel) auf der Weglänge (Bogenlänge) Δs um den Wert Δ τ so ist die »mittlere Krümmung« km auf der Strecke Δs


 


und die Krümmung der Kurve im betrachteten Punkt P


 


Unter dem Krümmungskreis der Kurve im Punkt P versteht man den Kreis durch P, der dieselbe Steigung und dieselbe Krümmung wie die Kurve in P hat. Der Radius ρ dieses Kreises heißt Krümmungsradius der Kurve in P. Es gilt


 


Die Tangenten einer Raumkurve liegen nicht in derselben Ebene und es gibt – im Gegensatz zu Flächen – im Punkt P auch nicht nur eine Tangentialebene, sondern unendlich viele. Unter ihnen greifen wir die Ebene heraus,in der der Tangenteneinheitsvektor t und der Vektor dt/ds liegen. Der letztgenannte Vektor gibt nämlich die Richtung an, in welcher sich der Vektor t in P dreht. Diese Ebene heißt die Schmiegungsebene der Kurve in P.

Der in der Schmiegungsebene liegende Einheitsvektor, der auf t senkrecht steht und dieselbe Richtung wie der Vektor dt/ds hat, heißt Hauptnormaleneinheitsvektor n der Kurve in P.


Hat ein Vektor v(u) eine konstante Länge v, so ist wegen v2 = v2 auch v2 = konst. Differenziert man die letzte Gleichung nach u und benutzt dabei die Regel für die Differentiation eines Skalarprodukts v·w mit w = v, so findet man


 


Wenn das Skalarprodukt zweier Vektoren v und dv/du null ist und keiner der beiden Vektoren selbst null ist (Nullvektor bzw. konstanter Vektor), dann müssen die beiden Vektoren aufeinander senkrecht stehen. Dies leuchtet auch unmittelbar ein: Wenn der Vektor dv/du eine Komponente in Richtung v hätte, dann würde sich die Länge von v zugleich mit u verändern.


Dieses Ergebnis wenden wir auf den Tangenteneinheitsvektor t einer Raumkurve an. Da die Länge von t konstant ist, muss seine Ableitung dt/ds auf t senkrecht stehen.

 

In der Abbildung liegen der Tangenten- und der Normalenvektor in der Zeichenebene, die folglich mit der Schmiegungsebene zusammenfällt. Die Kurve selbst dagegen verläuft im Allgemeinen links und rechts von P außerhalb dieser Ebene.

Unter der mittleren Krümmung einer Kurve im Bereich Δs versteht man den auf Δs bezogenen Drehwinkel Δτ der Tangente. Ihr Grenzwert für Δs gegen 0 heißt Krümmung k der Kurve im Punkt P.

 
 


Ein in der Schmiegungsebene gelegener Kreis durch P mit derselben Steigung und derselben Krümmung wie die Raumkurve, heißt Krümmungskreis der Kurve. Sein Radius heißt Krümmungsradius ρ der Kurve in P. Da für den Kreisbogen Δs (unabhängig von seiner Größe) stets gilt

 

gilt für seine Krümmung

 

Zur Berechnung der Krümmung einer Kurve aus ihrem Ortsvektor r(s) gehen wir wie folgt vor:

1. Berechnung von dt/ds:

 

2. Berechnung von dt/dτ:

 

Es ist:


 

und

 


3. Damit ergibt sich:

 


Da der Vektor dt/ds die Richtung des Normaleneinheitsvektors n hat, ist


 


Hieraus folgt durch Quadrieren und Wurzelziehen:

 



 

Integralrechnung mit Vektoren

Bearbeiten

In Integralen können Vektoren sowohl als Integrand (= die zu integrierende Funktion) als auch als Differential bei dem Integranden auftreten.

 

1. Typ: Nur der Integrand ist ein Vektor

Ein typisches Beispiel ist das Zeitintegral der Kraft, das in der Dynamik auftritt. (Dort ist es ein bestimmtes Integral; es genügt hier jedoch, nur unbestimmte Integrale zu untersuchen.)

 

 

Das Ergebnis ist also, wie zu erwarten war, ein Vektor.

Anmerkung: Dass oben die Einheitsvektoren i, j, k wie konstante Faktoren vor die Integrale gezogen werden dürfen, lässt sich wie folgt beweisen: Das Integralzeichen ist das Symbol für den Grenzwert einer Summe. Konstante Faktoren bei den Summanden können ausgeklammert werden, auch wenn sie (konstante) Vektoren sind.

 

2. Typ: Integrand und Differential sind Vektoren

Ein Beispiel dafür ist das Wegintegral der Kraft, mit dem die Arbeit berechnet wird.


 

Da F·dr ein Skalarprodukt ist, ergibt sich für das Ergebnis des Integrals erwartungsgemäß auch ein Skalar.

Ein spezielles wichtiges Beispiel hierfür ist:


 


Die Integration folgt hier formal derselben Regel wie bei  .


Ein anderes interessantes Beispiel (unter Verwendung des erst später erklärten Operators grad, dessen Bedeutung hier erkennbar ist):


 

 


 


Erläuterung: Der Integrand im vorletzten Integral ist das vollständige Differential dU der Funktion U = U(x, y, z).

 


3. Typ: Nur das Differential ist ein Vektor


 

Das Ergebnis ist ein Vektor.