Physikalische Grundlagen der Nuklearmedizin/ Interaktion von Strahlung mit Materie

Einleitung

Bearbeiten

Dies ist das fünfte Kapitel des Wikibooks Physikalische Grundlagen der Nuklearmedizin

Im letzten Kapitel haben wir uns auf die Strahlenquellen und die unterschiedlichen Strahlenarten konzentriert. Nun können wir uns damit beschäftigen, was passiert, wenn diese Strahlung mit Materie wechselwirkt. Der Hauptgrund wozu wir dies tun, ist um zu verstehen, was genau passiert, wenn Strahlung durch Materie hindurch tritt, aber auch, um uns auf die Frage, wie man Strahlung detektieren kann, vorzubereiten. Da alle Strahlendetektoren aus irgendeiner Form von Materie bestehen, ist es nützlich, erst einmal zu verstehen, wie Strahlung mit Materie wechselwirkt, so dass wir die dabei auftretenden Effekte nutzen können um entsprechende Detektoren zu entwickeln.

Bevor wir dies im Detail angehen, wollen wir uns an die wesentlichen physikalischen Eigenschaften der wichtigsten Strahlungsarten erinnern. Wir haben dieses Thema im Detail im ersten Kapitel behandelt. Sie sind jedoch der Bequemlichkeit halber unten noch einmal zusammengefasst:

Strahlentyp Masse Elektrische Ladung Geschwindigkeit
Alphateilchen ziemlich hoch zweifach positiv ziemlich gering
Beta-Minus-Teilchen etwa 8000 mal leichter als Alphateilchen einfach negativ kleiner als Lichtgeschwindigkeit
Beta-Plus-Teilchen etwa 8000 mal leichter als Alphateilchen einfach positiv kleiner als Lichtgeschwindigkeit
Gammastrahlen Keine Keine Licht-
geschwindigkeit

Wir werden uns nun mit dem Durchgang jedes einzelnen Strahlentyps durch Materie beschäftigen, wobei wir das Hauptaugenmerk auf die Gammastrahlen legen werden, da sie in der Nuklearmedizin am häufigsten verwendet werden. Einer der wichtigsten Effekte die einem hierbei unabhängig vom Strahlentyp auffallen werden ist, dass Ionen entstehen, wenn Strahlung mit Materie wechselwirkt. Aus diesem Grund spricht man auch von Ionisierender Strahlung.

Bevor wir nun starten, mag es nützlich sein, sich noch kurz mit einer Analogie zu befassen. Diese Analogie basiert darauf, dass wir uns die Materie aus einer sehr großen Anzahl von Atomen (sprich Kernen mit sie umkreisenden Elektronen) aufgebaut denken und uns die Strahlung als Teilchen, die durch die Materie hindurch fliegen, vorstellen. In Analogie kann man sich ein Raumschiff vorstellen, dass durch einen Meteorsturm hindurch fliegt, wie man es von Science-Fiction-Filmen her kennt, wobei das Raumschiff die Strahlung und die Meteore die Atome des durchstrahlten Materials darstellen. Eine besondere Eigenschaft, die wir jedoch erwähnen müssen, ist die Tatsache, dass unser Raumschiff, abhängig von der Strahlenart, eine elektrische Ladung tragen kann.

Alpha-Teilchen

Bearbeiten

Wir können aus der oben abgebildeten Tabelle sehen, dass Alpha-Teilchen eine zweifach positive Ladung tragen und uns daher leicht vorstellen, dass sie eine erhebliche elektrostatische Anziehung auf die äußeren Hüllenelektronen von Atomen, an denen sie nahe vorbeifliegen, ausüben. Dies führt dazu, dass einige Elektronen von ihren Kernen weggezogen werden, sodass Ionen entstehen. Anders ausgedrückt treten Ionisationen auf.

Aus der Tabelle können wir ersehen, dass Alpha-Teilchen im Vergleich zu anderen Strahlenarten sehr schwer sind, genauso wie die Atome des Materials, das von der Strahlung durchlaufen wird. Daher durchfliegen sie die Materie, abgesehen von seltenen Zusammenstößen mit den Kernen des Materials, in gerader Linie.

Eine dritte wichtige Eigenschaft ist die hierbei emittierte Energie. Bei Alpha-Teilchen ist sie immer diskret. Zum Beispiel emittiert 221Ra Alpha-Teilchen mit einer Energie von 6,71 MeV. Jedes von diesem Radionuklid emittierte Alpha-Teilchen besitzt genau diese Energie. Ein weiteres Beispiel ist 230U, welches Alpha-Teilchen der Energien 5,66 MeV, 5,82 MeV und 5,89 MeV emittiert.

Schließlich ist es notwendig zu bemerken, dass Alpha-Teilchen große biologische Schäden anrichten, wenn sie mit lebender Materie wechselwirken. Daher werden sie bei diagnostischen in-vivo-Untersuchungen nicht verwendet. Aus diesem Grund werden wir sie in diesem Wikibook nicht näher betrachten.

Beta-Teilchen

Bearbeiten

Aus der Tabelle können wir sehen, dass Beta-Minus-Teilchen einfach negative Ladung tragen. Beachte, dass wir Positronen (Beta-Plus-Teilchen) hier nicht behandeln werden, da sie, wie wir aus Kapitel 2 wissen, nicht sehr lange in Materie überleben können, bevor sie annihiliert werden. Beta-Minus-Teilchen leben erheblich länger, weshalb wir uns hier darauf konzentrieren werden.

Wegen ihrer negativen Ladung werden sie von Kernen angezogen und von Elektronenwolken abgestoßen, wenn sie sich in Materie bewegen. Dies führt, ohne hier ins Detail zu gehen, zu Ionisationen.

Der Weg, den Beta-Teilchen zurücklegen, wird oft als gewunden beschrieben, da sie dazu tendieren, von Atom zu Atom zu prallen.

Als letzten jedoch wichtigen Punkt müssen wir bemerken, dass die Energie von Beta-Teilchen nicht diskret, wie bei Alpha-Teilchen, sondern kontinuierlich verteilt ist. Die Energien der Beta-Teilchen einer Quelle haben eine spektrale Verteilung bis zu einer maximalen Energie   - siehe Abbildung unten. Beachte, dass sich die Energieverteilung über einen Bereich erstreckt und die Eigenschaften   und   eingezeichnet sind:

 
Beta Spektrum

Die Frage, die wir uns hier stellen müssen ist: Warum sehen wir ein Spektrum an Energien? Sicherlich sollten Elektronen mit genau einer diskreten Energie entstehen, wenn ein Neutron im Kern in ein Proton und ein Elektron zerfällt. Die Antwort liegt in der Tatsache, dass in Wirklichkeit zwei neue Teilchen im Beta-Zerfall entstehen. Wir haben die in Kapitel 2 verschwiegen, da wir den Anfang diese Wikibooks nicht zu sehr verkomplizieren wollten. Aber wir werden es hier der Vollständigkeit halber behandeln.

Das zweite neue Teilchen, das im Beta-Zerfall entsteht heißt Neutrino und wurde von Enrico Fermi so benannt. Es ist ein etwas mysteriöses Teilchen, welches weder Masse noch Ladung besitzt und seine genauen Eigenschaften werden zur Zeit noch erforscht. Das größte Problem mit dieser Art von Teilchen ist, dass sie sehr schwer zu detektieren sind und diese Tatsache hat unser Wissen über sie bisher wesentlich beschränkt.

Das Energiespektrum der Beta-Teilchen kann man verstehen, wenn man sich klarmacht, das die Energie, die bei der Umwandlung des Neutrons in ein Proton frei wird, auf das Beta-Teilchen und das Neutrino aufgeteilt wird. Manchmal geht die gesamte Energie auf das Beta-Teilchen über, und dieses erhält somit seine maximal mögliche Energie Emax. Häufiger jedoch wird die Energie auf die beiden Teilchen verteilt, so dass das Beta-Teilchen zum Beispiel nur die mittlere Energie EMittel erhält, wobei die verbleibende Energie auf das Neutrino übergeht.

Schließlich ist es wichtig zu wissen, dass Beta-Teilchen einen recht hohen biologischen Schaden verursachen. Dies ist einer der Gründe warum sie nicht bei diagnostischen Untersuchungen am lebenden Objekt verwendet werden. Wir werden sie daher in diesem Wikibook nicht näher betrachten.

Gammastrahlung

Bearbeiten

Da wir oben schon über Energien geredet haben, wollen wir nun klarstellen, dass die Energien von Gammastrahlen die von einer radioaktiven Quelle emittiert werden immer diskret sind. Zum Beispiel emittiert 99mTc Gammastrahlung mit einer Energie von 140 keV und 51Cr emittiert Gammastrahlung bei einer Energie von 320 keV.

Gammastrahlen können auf verschieden Arten mit Materie wechselwirken. Einige von ihnen haben für die Nuklearmedizin keine Bedeutung und werden hier nicht näher behandelt.

Die für die nuklearmedizinische Bildgebung wichtigen Wechselwirkungen sind:

Wir werden sie unten beide nacheinander behandeln. Man beachte, dass die hier beschriebenen Effekte auch für die Wechselwirkung von Röntgenstrahlen mit Materie relevant sind, da wie wir bereits vorher erwähnt haben Röntgenstrahlen und Gammastrahlen im wesentlichen das selbe physikalische Phänomen darstellen (sich jedoch in ihrer Energie unterscheiden). Somit ist die unten angeführte Beschreibung auch für Röntgen-Radiographie von Bedeutung.

Photoelektrischer Effekt

Bearbeiten

Wenn ein Gamma-Strahl mit einem Hüllenelektron eines Atoms des Materials, durch das er sich hindurch bewegt, zusammen stößt, kann er dabei seine gesamte Energie an das Elektron abgeben und damit aufhören zu existieren - siehe Abbildung unten. Aufgrund des Energieerhaltungssatzes können wir ableiten, dass die kinetische Energie des aus dem Atom herausgeschlagenen Elektrons um seine Bindungsenergie (vor der Wechselwirkung) kleiner sein muss als die Energie des Gamma-Strahls. Eine solches Elektron wird auch Photoelektron genannt.

 
Photoelektrischer Effekt
Hier klicken um die animierte Version dieser Graphik zu sehen.

Man beachte, dass ein Ion zurückbleibt, wenn das Photoelektron das Atom verlässt und weiterhin dass der Gamma-Strahl in diesem Vorgang vollständig vernichtet wird.

Die beiden folgenden Punkte sind auch beachtenswert. Erstens kann ein Photoelektron, ähnlich einem Beta-Teilchen, Ionisationen entlang seiner Flugbahn verursachen. Weiterhin können Röntgenstrahlen emittiert werden, wenn die durch das Photoelektron entstandene Lücke in der Atomhülle durch ein Elektron einer äußeren Schale gefüllt wird. Wir erinnern uns das wir ein ähnliches Phänomen bereits in Kapitel 2 kennen gelernt haben, als wir uns mit dem Elektroneneinfang beschäftigt haben.

Compton-Effekt

Bearbeiten

Dieser Effekt ähnelt ein wenig dem Anspielen einer farbigen Kugel mit der weißen Kugel beim Billard. Hier gibt der Gammastrahl nur einen Teil seiner Energie an ein Valenzelektron, welches hier als freies Elektron betrachtet werden kann, ab - siehe Abbildung unten. Man beachte, dass das Elektron das Atom verlässt und sich wie ein Beta-Minus-Teilchen verhält und dass der Gammastrahl in eine andere Flugrichtung abgelenkt wird. Dieser abgelenkte Gammastrahl kann in weiteren Compton-Effekten mit den Elektronen des Materials wechselwirken. Wir bemerken, dass der Effekt auch als Compton-Streuung bezeichnet wird.

 
Compton-Effekt
HIER Klicken um die animierte Version diese Graphik zu sehen.

Dämpfung von Gamma-Strahlung

Bearbeiten

Die beiden oben beschriebenen Effekte führen zu Absorption und Streuung der radioaktiven Strahlen. Die Effekte werden unter dem Oberbegriff Dämpfung von Gamma-Strahlung zusammengefasst. Wir werden dieses Phänomen im nächsten Kapitel aus einer analytischen Perspektive untersuchen.


Strahlenbiologie

Bearbeiten

Es ist allgemein bekannt, dass ionisierende Strahlung lebende Zellen beschädigen kann. Wir haben oben die zugrundeliegenden atomaren Wechselwirkungen bereits behandelt. Für die Strahlenbiologie ist es wichtig, dass diese Wechselwirkungen komplexe Ketten biomolekularer Reaktionen auslösen können, die zu biologischen Schäden führen.

Wir haben weiter oben gesehen, dass die primären Wechselwirkungen von Strahlung und Materie zum Herausschleudern von Hüllenelektronen führen. Durch den Verlust eines oder mehrerer Hüllenelektronen bleibt das Atom positiv geladen zurück.

Andere Wechselwirkungen führen zur Anregung des Atoms und nicht zur Ionisation. Hierbei erhält ein (äußeres Valenz-) Elektron eine Energie, die ausreicht, um es in einen Anregungszustand zu heben. Ein solcher Zustand ist normalerweise nicht besetzt. Der mittlere Abstand des Elektrons vom Kern ist in diesen Zustand größer als in seinem ursprünglichen Zustand.

Dieser Effekt verändert die chemischen Kräfte, die Atome in Molekülen zusammen halten. Daher kann es zu einer Umstrukturierung der Atome zu einem neuen Molekül kommen. Daher ist die Anregung eine indirekte Methode chemische Veränderungen durch Modifikationen einzelner Atome (und damit ihrer Bindungen zu den Nachbaratomen) anzuregen.

Ionisationen und Anregungen können zu instabilen chemischen Systemen (Molekülbruchstücken) führen, welche als freie Radikale bezeichnet werden. Freie Radikale sind Atome (oder Moleküle), in denen es ungepaarte Elektronen gibt.

In Molekülen gibt es genauso wie in Atomen auch Zustände in denen sich die Elektronen des Moleküls befinden. Ein Zustand kann durch eine Gruppe von wenigen Zahlen beschrieben werden, welche man Quantenzahlen nennt. Eine von diesen heißt Spin. Alle anderen wollen wir hier als Grob-Quantenzahlen bezeichnen. Man hat experimentell gefunden, dass zwei Elektronen niemals im gleichen Zustand sind. Die Physiker Pauli und Fermi entwickelten daraufhin Theorien in denen zwei Elektronen niemals im gleichen Zustand seien dürfen. Eine Gruppe von Teilchen, zu denen auch das Elektron gehört, wurden daraufhin Fermionen genannt und die Aussage: „Zwei Fermionen befinden sich niemals im gleichen Zustand“ als Pauli-Verbot/Pauli(sches)-(Ausschließungs)-Prinzip bezeichnet. Stimmen also zwei Elektronen in allen ihren Grob-Quantenzahlen überein, so müssen Sie sich demnach in ihren Spinquantenzahlen unterscheiden. Stimmen zwei Elektronen in ihren Grobquantenzahlen überein, so bezeichnet man sie als gepaart. Gibt es in einem Atom (oder Molekül) ein Elektron, so kann es passieren, dass es kein weiteres Elektron im selben Atom (oder Molekül) gibt welches mit ihm in allen Grob-Quantenzahlen übereinstimmt. Ein solches Elektron bezeichnet man als ungepaartes Elektron und das Atom (oder Molekül) zu dem es gehört als ein Radikal.

Radikale sind chemisch sehr reaktionsfreudig und streben einen stabileren Zustand an indem sie Bindungen mit benachbarten Atomen und Molekülen eingehen. Die Entstehung freier Radikale führt daher meist zu Veränderungen der Moleküle in der Umgebung.

Aber schauen wir zuerst noch einmal die Wechselwirkungen selbst an.

Bei Wechselwirkungen mit Röntgen- und Gammastrahlen geht die Energie der Photonen (teilweise) auf die Hüllenelektronen über, zum Beispiel durch den Compton- und den Photoelektrischen Effekt. Diese Stahlen können tief in das Gewebe eindringen, da sie nur mit geringer Wahrscheinlichkeit mit Elektronen wechselwirken. In der Tat ist Nuklearmedizinische Bildgebung nur möglich, wenn die Energie der Gammastrahlen hoch genug ist, um den Körper des Patienten zu verlassen, aber zugleich klein genug ist, um mit dem Material des Detektors wechselwirken zu können und ein messbares Signal zu erzeugen.

Geladene Teilchen (z.B. Alpha- und Betateilchen) können jedoch auch durch anziehende oder abstoßende elektromagnetische Kräfte mit Atomkernen wechselwirken. Alphateilchen können auch mit Kernen kollidieren und sich oder den Kern dabei verändern. Bei der Wechselwirkung von Elektronen mit Kernen blieben beide in der Regel unverändert[1].

Die Rate, mit der ein geladenes Teilchen entlang seiner Bahn Energie verliert, hängt mit den Coulombkräften, durch die es mit den Teilchen in seiner Umgebung wechselwirkt, zusammen. Je größer die elektrische Ladung des Teilchens ist um so größer ist die Wahrscheinlichkeit Ionenpaare zu erzeugen, also soviel Energie auf (an Atome gebundene) Elektronen seiner Umgebung zu übertragen, dass sie ihre Atome verlassen. Langsamere Teilchen erzeugen ebenfalls mehr Ionenpaare, weil sie eine längere Zeit brauchen, um ihre Umgebung zu verlassen und daher länger mit dieser wechselwirken können.

Die Situation ist in der folgenden Abbildung, wo Spuren geladener Teilchen in Wasser abgebildet sind, dargestellt. Man sieht, dass die Bahn eines Alpha-Teilchens als relativ gerade Linie verläuft wie wir es bereits früher in diesem Kapitel besprochen haben. Wobei eine der große Anzahl an Wechselwirkungen (die als Kreuze entlang der Bahnkurven zu erkennen sind) pro Längeneinheit auftreten. Man sieht auch, dass die Bahnen der Elektronen stark gewunden verlaufen, wie wir bereits vorher besprochen haben, wobei die Anzahl der Wechselwirkungen pro Längeneinheit jedoch deutlich geringer ist (als bei Alpha-Teilchen).

 
Ionisationen und Anregungen entlang der Bahnen von Teilchen in Wasser, für ein 5,4 MeV α-Teilchen (oben links), für die nach der Absorption eines 1,5 keV Röntgen Photons frei gewordenen Elektronen (oben rechts) und für die beim Zerfall von Iod-125 entstandenen Elektronen (unten).

Der Lineare Energietransfer (LET) ist definiert als die von einem ionisierenden Teilchen pro Längeneinheit an die Umgebung abgegebene Energie. Ein langsames Teilchen mit großer Ladung hat daher einen wesentlich höheren LET als ein schnelles Teilchen mit geringer Ladung. Ein Alpha-Teilchen von 5 MeV und ein Elektron von 1 MeV haben entsprechend LETs von 95 bzw. 0,25 keV/μm. Die Ionisationsdichte und damit das Muster der Wechselwirkungen, das durch die schweren stark geladenen Alpha-Teilchen hervorgerufen wird, ist viel dichter als das von den Elektronen erzeugte, wie man in der obigen Abbildung sieht.

Die Energie, die ein geladenes Teilchen auf seine Umgebung überträgt, wird sich mit der zurückgelegten Strecke ändern, da sich die Geschwindigkeit des Teilchens kontinuierlich abnimmt. Jede Wechselwirkung nimmt dem Teichen einen kleinen Teil seiner Energie, so dass der LET sich mit der von Teilchen zurückgelegten Strecke zuerst langsam und am Ende drastisch erhöht. Dieses Maximum am Ende des Weges bezeichnet man als Bragg-Peak, es tritt auf unmittelbar bevor das Teilchen zur Ruhe kommt.

Das International Commission on Radiation Units and Measurements (ICRU) schlägt vor das lineal energy ein besserer Indikator für die relative biologische Effektivität (RBE) ist. Obwohl die lineare Energie die gleichen Einheiten wie das LET hat ist sie definiert als:

Verhältnis der in einem Volumen an Gewebe deponierten Energie und dem mittleren Durchmesser diese Volumens

Da die mikroskopische Verteilung der Energie recht anisotrop sein kann, sollte die lineare Energie ein besseres Maß für den von der Strahlung verursachten Schaden sein als der LET. Das ICRU und das ICRP haben daher vorgeschlagen, dass die biologischen Effektivität eines bestimmten Strahlentyps auf Basis der linearen Energie einer Kugel mit einem Mikrometer Durchmesser angegeben werden soll. Die lineare Energie kann für jeden gegebenen Strahlentyp und jede Energie berechnet werden und ein Strahlungswichtungsfaktor (wR) kann aus den entlang des Weges der Strahlung integrierten Werten der linearen Energie bestimmt werden.

Alles Leben auf diesem Planeten war seit Urzeiten ionisierender Strahlung ausgesetzt. Die derzeitige Situation für den Menschen ist in der folgenden Tabelle zusammengefasst:

Adapted with permission from Applied Imaging Technology.
Quelle Äquivalent-
dosisleistung (mSv/Jahr)
Bemerkungen
Kosmische Strahlung ~0.4 Etwa 100.000 Neutronen der kosmischen Strahlung und 400.000 kosmische Sekundärstrahlen durchdringen unseren Körper pro Stunde - und diese Dosis nimmt mit der Höhe zu!
Terrestrische Strahlung ~0.5 Über 200 Millionen Gammastrahlen durchdringen unseren Körper pro Stunde aus Quellen wie Erde und Baumaterialien.
Körpereigene Strahlung ~0.3 Ungefähr 15 Millionen 40K-Atome und ungefähr 7.000 natürliche Uranatome zerfallen stündlich in unserem Körper, hauptsächlich aus unserer Nahrung.
Radon und andere Gase ~1.3 Ungefähr 30.000 Atome, die aufgrund unserer Atmung aufgenommen werden, zerfallen stündlich in unserer Lunge

Die Summe all dessen heißt natürliche Strahlenbelastung und beträgt etwa 2.5 mSv pro Jahr mit großen Schwankungen abhängig von der Höhe und der Nahrungsaufnahme sowie den geologischen und geographischen Gegebenheiten des Ortes.

Es wird gemeinhin angenommen, dass es in lebender Materie Reparaturmechanismen gibt, die ausgelöst werden sobald Strahlenschäden auf biomolekularer Ebene auftreten. Diese Mechanismen liegen wahrscheinlich in der Evolution begründet und stellen die Antwort auf die seit Uhrzeiten wirkende natürliche Hintergrundstrahlung dar.

Es ist bekannt, dass erhebliche Schäden im Gewebe durch höhere Strahlenflüsse verursacht werden können, sogar bei in der Medizin verwendeten Dosen. Zelltod und Übergänge von Zellen in krankhafte Zustände können auftreten und zu langen Latenzzeiten von mehreren Jahren führen bevor klinische Symptome von Krebs oder Leukämie sichtbar werden. Die weitere Behandlung des weiten Feldes der Strahlenbiologie geht jedoch hier über unsere Ziele hinaus.

  1. Elektronen können nur über die schwache oder elektromagnetische Kraft wechselwirken, Alphateilchen jedoch auch über die starke Kraft. Die Gravitation spielt hier keine Rolle.

Folienvortrag von Dr. Manfred Krammer (Österreichische Akademie der Wissenschaften Wien). Sehr schöner Vortrag. Zielgruppe: Physikstudenten, also leider nicht so ganz einfach.