Mathematrix: AT PSA/ Theorie/ Vorstufe
Definitionen der Grundrechenarten
BearbeitenDie vier Grundrechenarten
BearbeitenRechenart | Ausgedrückt als | Symbol | Namen der Teile | Name des Ergebnisses |
---|---|---|---|---|
Addition | plus | + | ||
(addieren, erhöhen) | Summand Summand | Summe | ||
Subtraktion | minus | − | ||
(subtrahieren, reduzieren, vermindern, abziehen) | Minuend Subtrahend | Differenz | ||
Multiplikation | mal | ⋅ (×) | ||
(multiplizieren, vervielfachen, -fach) | Faktor ⋅ Faktor | Produkt | ||
Division | durch | : (÷, /) | ||
(dividieren, teilen) | Dividend Divisor | Quotient |
Das Symbol = ist ein Gleichheitszeichen. Es steht für die Gleichheit zweier Ausdrücke. Es wird in einem eigenen Abschnitt genauer erklärt.
Das Symbol × für die Multiplikation wird kaum benutzt, weil es leicht mit dem Symbol oder dem Buchstaben x für die Variable x verwechselt werden kann.
Wozu in Rechnungen Buchstaben verwendet werden, werden wir später lernen.
Für die Multiplikation wird in diesem Buch das Symbol · benutzt.
Das ist ein Punkt ungefähr auf halber Höhe einer Ziffer notiert.
Für die Division benutzt man auch Punkte :
Die anderen Symbole für die Division / und ÷ werden seltener benutzt.
Typisch wird allerdings / bei den Einheiten verwendet, beispielsweise in der Geschwindigkeit (km/h). In diesem Beispiel sagt man "Kilometer pro Stunde". Mit dem Wort "pro" ist Division gemeint.
Weil für Multiplikation und Division Punkte als Symbole verwendet werden, nennt man die beiden Rechenarten zusammen Punktrechnungen.
Die Symbole für die Addition + und die Subtraktion – verwenden dagegen beide Striche. Daher nennt man diese beiden Rechenarten zusammen Strichrechnungen.
Bei Addition und Multiplikation spielt jeweils die Reihenfolge keine Rolle:
-
- Die Reihenfolge spielt keine Rolle bei der Addition.
-
- Die Reihenfolge spielt keine Rolle bei der Multiplikation.
Bei Subtraktion und Division ist die Reihenfolge wichtig. Das Ergebnis ist nicht das Gleiche, wenn die Reihenfolge anders ist:
- aber
- aber
Weitere Ausdrücke für die vier Grundrechenarten
BearbeitenIm Alltag gibt es allerdings einige Worte, die irgendeine Rechenart bedeuten können:
- Schneiden, Kürzen (zum Beispiel Gehalt) und so weiter könnte minus bedeuten
- Wachsen, zwei Sachen zusammen, insgesamt könnte plus bedeuten
- in einige gleiche Teilen schneiden könnte doch geteilt durch bedeuten
... und so weiter ...
Das Gleichheitszeichen
BearbeitenEin Symbol, das bisher nicht erklärt wurde, ist das Gleichheitszeichen "=". Es wird benutzt, um zu zeigen, dass der Ausdruck links des Zeichens das Gleiche ist, wie der Ausdruck rechts des Zeichens. Dies betrifft sowohl den Wert als auch die Einheit.
✔(richtig)
✔(richtig)
✘(falsch: falscher Wert)
✘(falsch: falsche Einheit)
✘(falsch: rechts fehlt die Einheit m)
Wie man mit Einheiten arbeitet, werden wir genauer im entsprechenden Kapitel lernen. Da werden wir auch erfahren, dass
doch richtig ist.
Es gibt allerdings Gleichungen zwischen mehr als zwei Ausdrucken ("Gleichungsketten"), wie wir vorher gesehen haben:
Bei Gleichungsketten sind alle Ausdrücke gleich, daher kann man in diesem Beispiel auch schreiben:
oder
Es gilt daher allgemein:
- wenn dann auch
- wenn dann auch
Gleichungsketten kann man allerdings in der Regel nicht bei sogenannten Äquivalenzumformungen benutzen, wie wir später lernen werden.
Die Gleichung zwischen zwei Ausdrucke spielt allerdings eine wichtige Rolle beim Einsetzen, ein Verfahren, das wir im entsprechenden Kapitel lernen werden.
Negative Zahlen
BearbeitenDas Minuszeichen benutzt man nicht nur bei der Subtraktion, sondern auch um sogenannte negative Zahlen zu bezeichnen. Was die negativen Zahlen sind, kann man ziemlich einfach verstehen, wenn man sich vorstellt, in einem Aufzug zu sein. Betrachten wir die folgende Bilderfolge:
Im ersten Bild fängt man vom Erdgeschoss an, dieses kann man mit der Zahl 0 bezeichnen. Dann fährt man mit dem Aufzug 2 Stockwerke nach oben. Die Richtung nach oben kann man mit Plus (+) bezeichnen. Das ist im Bild zu sehen. 0+2=2. Im dritten Bild fährt man aus dem 2. Stock 3 Stockwerke weiter nach oben (+ Richtung). 2+3=5. Im vierten Bild fährt man 8 Stockwerke nach unten. Nach unten kann man mit Minus (−) bezeichnen, da die Stockwerke weniger werden. Wenn man aber 5−8 rechnet, kann das Ergebnis nicht 3 sein. 3 ist oberhalb des Erdgeschosses, wir sind aber jetzt in dritten Untergeschoss. Um die Stockwerke unter dem Erdgeschoss zu bezeichnen, braucht man etwas Neues: das Minuszeichen vor dem Stockwerk! Wir sind also im Stock −3, also 3 Stockwerke unterhalb des Erdgeschosses.
Im fünften Bild fährt man ein Stockwerk weiter nach unten. Wir waren im Stock −3 und nach unten bedeutet minus. Am Ende sind wir 4 Stockwerke unter der Erde, also im Stock −4: −3−1=−4. Wenn also beide Zahlen negativ sind, addiert man ihren sogenannten Betrag (3 und 1) und schreibt vor dem Ergebnis wieder ein Minus. Im sechsten Bild fährt man aus dem 4 Stock unter der Erde (−4) 5 Stockwerke nach oben (nach oben bedeutet Plus machen) und befindet sich am Ende einen Stock oberhalb des Erdgeschosses (bei +1): −4+5=1. Wenn man zwei Zahlen mit unterschiedlichem Vorzeichen hat, subtrahiert man die Beträge (größerer Betrag minus kleineren Betrag, hier: 5−4=1) und schreibt man vor dem Ergebnis das Vorzeichen des größeren Betrags (also hier von 5, da sie mehr als 4 ist). Im vierten Bild haben wir 5−8 gerechnet. Da haben wir wieder die Beträge subtrahiert (größerer minus kleineren: 8−5=3) und im Ergebnis haben wir wieder das Vorzeichen des größeren Betrags geschrieben (also das Minus, das vor 8 steht): 5−8 = −3.
Zusammengefasst: Wenn man zwei Zahlen mit dem gleichen Vorzeichen hat (z.B. 4+7 oder −3−5), dann addiert man die Beträge (4+7=11 und 3+5=8) und schreibt vor dem Ergebnis das Vorzeichen: (4+7=11 und −3−5 = −8). Wenn die eine Zahl positiv (+) ist und die andere negativ(−), subtrahiert man die Beträge und schreibt vor dem Ergebnis das Vorzeichen des größten Betrags: 4−7=−3 15−9=6
Negative Zahlen werden immer mit einem Minus davor geschrieben, z.B. −6 oder −7,453 oder . Positive Zahlen werden mit einem Plus davor geschrieben, z.B. +6 oder +7,453 oder . Bei positiven Zahlen kann man das Vorzeichen auslassen. Zum Beispiel ist 6 die positive Zahl +6, mit 7,453 wird die positive Zahl +7,453 gemeint und mit einfach .
Wenn allerdings das Plus oder das Minus nach der Zahl geschrieben wird, bedeutet es nicht, dass es eine positive oder negative Zahl ist. In diesem Fall erwartet man, dass noch eine Zahl folgen soll. 3− ist einfach unvollständig und auf gar keinen Fall die Zahl Minus drei ...
Weiteres über Rechnungen mit negativen Zahlen werden wir im Teilkapitel über die Plusminusregel lernen.
Das Komma bei Dezimalzahlen
BearbeitenNoch ein wichtiger Punkt bei der Schreibweise muss man noch kurz ansprechen. Und es geht hier genau um den Punkt.
Wenn man mit dem Taschenrechner die Division 2 durch 7 macht, kommt etwas wie folgendes vor:
Das ist eine Zahl, die kleiner als eins ist. Auf Deutsch allerdings schreibt man:
Falls der Unterschied nicht klar ist:
im ersten Fall steht zwischen 0 und dem Rest der Zahl ein Punkt:
im zweiten Fall ein Komma:
Man sagt auf Deutsch "Null Komma zwei acht fünf sieben...". Dieser Unterschied muss einem bewusst sein!
Auf Englisch und bei den meisten Taschenrechnern schreibt man
oder sogar
.
Auf Deutsch und in ein paar anderen Sprachen werden die beiden Teile umgekehrt durch ein Komma getrennt:
oder sogar
.
Auf diese Tatsache sollte man aufpassen!
Insbesondere wenn Menschen mit unterschiedlichen Kulturen, Sprachen oder Notationen Daten miteinander austauschen, kann dieser Unterschied für Verwirrung sorgen. Beim internationalen Datenaustausch und bei Programmiersprachen wird daher praktisch durchgehend der Punkt und nicht das Komma als Trennzeichen verwendet, in diesem Buch (wie allgemein auf Deutsch) allerdings das Komma.
Addition
BearbeitenRechenart | Ausgedrückt als | Symbol | Namen der Teile | Name des Ergebnisses |
---|---|---|---|---|
Addition | plus | + | 2 + 7 = | 9 |
(addieren, erhöhen) | Summand + Summand = | Summe |
Beispiele: a) 35,7 + 59367 + 95382,89 + 567332,76=? b) 56333,76 + 0,089 + 33727,727 + 9=?
|
|
Man schreibt die Zahlen, die man addieren will, untereinander. Die Kommas müssen untereinander sein! Wenn eine Zahl kein Komma hat, dann schreibt man ein Komma am Ende der Zahl.
Um die Aufgabe übersichtlicher zu machen, schreibt man links und rechts der Zahlen Nullen(0), wenn Ziffer (im Vergleich zu den anderen Zahlen) „fehlen“.
Man addiert die Zahlen von jeder Spalte und fängt mit der rechten Spalte an (und dann immer eine Spalte nach links). Die Summe der Ziffer der Spalte schreibt man unterhalb dieser Spalte.
Wenn die Summe der Ziffer in der Spalte mehr als 9 ist, dann schreibt man unterhalb der Spalte nur die letzte Ziffer und die restlichen oberhalb der nächsten Spalte links. Z.B. bei der Aufgabe a ist die Summe der Ziffer der Spalte rechts (mit der man anfängt) 0+0+9+6=15. Man schreibt darunter 5 (die letzte Ziffer) und 1 (15 ohne 5) oberhalb der nächsten Spalte links usw. Hier ist Aufgabe a Schritt zum Schritt gezeigt:
Subtraktion
BearbeitenRechenart | Ausgedrückt als | Symbol | Namen der Teile | Name des Ergebnisses |
---|---|---|---|---|
Subtraktion | minus | − | 65 − 22 = | 43 |
(subtrahieren, reduzieren, vermindern, abziehen) | Minuend − Subtrahend = | Differenz |
Beispiele: a) 9,2-6,7 b) 9,5-6,4 c) 4752,8–203,007
Man schreibt die Zahlen untereinander. Die Kommas müssen untereinander sein! Wenn eine Zahl kein Komma hat, dann schreibt man ein Komma am Ende der Zahl.
Die Zahl oben muss genau so viele Ziffer vor und nach dem Komma haben, wie die Zahl unten. Daher schreibt man rechts der Zahl oben Nullen(0), wenn Ziffer in den Nachkommastellen (im Vergleich zur Zahl unten) „fehlen“.
Man subtrahiert die Zahlen von jeder Spalte (oben minus unten) und fängt mit der rechten Spalte an (und dann immer eine Spalte nach links).
Wenn die Ziffer oben kleiner als die Ziffer unten ist, dann addiert man zu dieser Ziffer 10 und subtrahiert von der nächsten Ziffer oben links eins. In der nächsten Spalte links benutzt man dann oben die reduzierte Ziffer. Beispielsweise:
Bei größeren Zahlen macht man den ganzen Vorgang bei jedem Schritt.
Bsp. A 453,803−452,944=0,857 |
Bsp. B 504,6−3,6003=500,997 |
Bsp. C 200−199,9998=0,0002 |
Multiplikation
BearbeitenDefinition der Multiplikation
BearbeitenRechenart | Ausgedrückt als | Symbol | Namen der Teile | Name des Ergebnisses |
---|---|---|---|---|
Multiplikation | mal | ⋅ (×) | 9 ⋅ 13 = | 117 |
(multiplizieren, vervielfachen, -fach) | Faktor ⋅ Faktor = | Produkt |
Zunächst einmal erklären wir die Bedeutung der Multiplikation.
bedeutet, dass man mal die zueinander addiert (plus macht). Also . Allerdings spielt bei der Multiplikation die Reihenfolge keine Rolle. . Letzteres ( ) bedeutet drei mal die 5 zueinander addieren: .
Mit Hilfe der Addition kann man ein Multiplikationstabelle erstellen, sie wird das kleine Einmaleins genannt.
Multiplikation mit Hilfe der Einmaleins-Tabelle
BearbeitenMit Hilfe der Einmaleinstabelle (die man allerdings schon auswendig lernen könnte) kann man Multiplikationen zwischen Zahlen mit einer Ziffer ganz schnell berechnen:
Und noch ein paar Beispiele:
|
Multiplikation von Zahlen mit mehreren Ziffern und Nachkommastellen
Bearbeitena) | b) | c) | d) | e) | f) | g) | h) |
Beispiel a haben wir im Abschnitt über Definition schon beantwortet:
Bevor wir mit den restlichen Beispielen weitermachen, müssen wir zwei Sachen noch erklären.
- Bemerkung: Multiplizieren mit Klammern
Wenn etwas in Mathematik in Klammern steht, ist es so gemeint, dass die Rechnung in den Klammern erst gemacht werden muss. Wenn wir berechnen wollen, rechnen wir erst aus, also was in den Klammern steht. . Dann führen wir die Multiplikation aus: . Hätten wir erst gerechnet und dann , wäre das Ergebnis falsch: .
Das bedeutet dann, dass man die Zahl außerhalb der Klammern erst mit jedem Summand in den Klammern multiplizieren muss und dann diese Produkte addieren. ist nicht . Man muss erst die Zahl außerhalb der Klammern (3) erst mit jedem Summand in den Klammern (2 und 5) multiplizieren und dann diese Produkte (6 und 15) addieren: (also das richtige Ergebnis). Man schreibt:
oder
- Bemerkung: Multiplizieren mit 10
Wenn man eine Zahl mit 10 multipliziert, ist das Ergebnis diese Zahl mit einer Null auf ihren rechten Seite geschrieben. Das haben wir in der einmaleins-Tabelle gesehen: usw. Leicht denkt man dann, dass das Gleiche mit passiert. Tatsächlich ist gleich einer mit einer dahinter, also .
Im Beispiel b ist es möglich, als Produkt von und zu schreiben. Es steht tatsächlich in der einmaleins-Tabelle, dass ist, also
Daher
(wir haben gerade eben im Beispiel a gesehen, dass ist).
Wir wir in der zweiten Bemerkung (Multiplizieren mit 10) gerade eben gelernt haben, gilt für
Man kann also zusammenfassen:
, also .
Um Beispiel c zu lösen, können wir die erste Bemerkung (Multiplikation mit Klammern) benutzen:
ist
wie wir eben im Beispiel b gesehen haben.
wie man aus der Einmaleins-Tabelle ablesen kann. Somit ist
,
also
.
In der gleichen Weise und mit den gleichen Schritten kann man Beispiel d berechnen:
,
also
.
Aber auch Beispiel e ist dann nicht so schwer, man soll einfach eine Null zum Ergebnis von d dazu schreiben, wie wir in der Bemerkung über Multiplikation mit 10 gelernt haben:
Wenn jetzt mit multipliziert wird, wie im Beispiel f, dann werden die folgenden Schritte gemacht:
(Wir haben hier die Ergebnisse aus den Beispielen e und c benutzt)
ist
wie wir schon bei der Addition gelernt haben. Also:
Es gibt verschiedene Schreibweisen, die diesen Prozess beschreiben.
|
oder | (ohne Null)
|
und |
|
oder |
|
Wenn man Kommas hat, lässt man die Kommas und die Nullen am Anfang aus und macht die Multiplikation. Im Beispiel g ( ) haben wir insgesamt 8 Nachkommastellen (zwei bei und sechs bei , also 2+6=8 Stellen nach dem Komma insgesamt). Beim Ergebnis der Multiplikation ohne Kommas ( ) fängt man dann mit der Ziffer rechts (hier ) an und zählt nach links so viele Stellen, wie die gesamten Nachkommastellen (hier 8 Stellen). Dort muss beim neuen Ergebnis das Komma stehen. hat aber nur vier Ziffer. Wenn die Zahl weniger Ziffer als die Nachkommastellen hat wie hier, schreibt man erst mehrere Nullen links der Zahl:
Komma 7 Stellen nach links stellen →
Daher:
Wenn man Nullen am Ende der Zahlen hat, dann lässt man diese Nullen aus. Man macht die Multiplikation und schreibt dann wieder die ausgelassenen Nullen dazu. Im Beispiel h ( ) haben wir 4 Nullen (eine bei und drei bei ). Also zum Ergebnis schreibt man noch 4 Nullen dazu: . Also .
Das Folgende Beispiel zeigt die Vorgangsweise genauer und Schritt zum Schritt:
Und noch ein Beispiel, diesmal mit zwei Zahlen mit jeweils drei Ziffern:
Division
BearbeitenDefinition der Division
BearbeitenRechenart | Ausgedrückt als | Symbol | Namen der Teile | Name des Ergebnisses |
---|---|---|---|---|
Division | durch | : (÷, /) | 84 : 7 = | 12 |
(dividieren, teilen) | Dividend : Divisor = | Quotient |
Einfache Division mit Hilfe der Einmaleins-Tabelle
BearbeitenMit diesem Vorgang kann man Divisionen durchführen, wenn der Divisor höchstens (also kleiner oder gleich) 10 ist und der Dividend höchsten das 10-fache des Divisors (also wenn der Divisor 4 ist, höchsten 40, wenn der Divisor 7 ist, höchstens 70 und so weiter.)
Es gibt einen Rest. Diesen berechnen wir dann: 3 mal 5 = 15 und 17−15=2 also 17 : 5 = 3 mit Rest 2 Man schreibt: 17:5=3 R 2 |
Der Haupt(vor)gang der Division
BearbeitenDer Vorgang der Division, wenn der Dividend eine größere Zahl ist, kann durch vier Schritte beschrieben werden:
- ↓ Ziffer runter (ganz links anfangen)
- ÷ was runter steht durch den Divisor dividieren (mit Hilfe der Einmaleinstabelle)
- × das Ergebnis der Division mit dem Divisor multiplizieren
- − dieses Produkt von dem, was "runter steht" subtrahieren. So berechnet man den Rest der Division (Schritt 2)
So einen Vorgang nennt man in Mathematik (und nicht nur) Algorithmus. Die vier Schritte (↓ ÷ × –) werden wiederholt (so was nennt man Iteration). Wenn der Rest null ist und es kein Ziffer mehr am Dividend gibt, dann hört man auf. Es gibt aber auch die Möglichkeit, dass der Rest nie Null wird. Dieser Fall wird später erklärt.
Am besten versteht man den Vorgang durch ein Beispiel (um ihn zu lernen, muss man selbstverständlich üben...). Probieren wir 792:3 zu berechnen:
Jetzt wird der Vorgang wiederholt! | |||
Jetzt wird der Vorgang noch mal wiederholt! | |||
Was aber man in der Tat schreibt, sieht doch anders aus! Man schreibt nur gewisse Schritte, der Rest macht man im Kopf oder als Nebenrechnung am Rand. Hier die Schritte, wie sie tatsächlich geschrieben werden:
Ein letztes Beispiel:
In diesem Fall sagt man, dass 842 durch 5 gleich 168 mit Rest 2 ist. Man schreibt 842:5=168 R 2. Der Rest muss allerdings immer kleiner als der Divisor sein (auch in den Zwischenschritten), sonst hat etwas nicht richtig geklappt. Die Division kann man allerdings weiterführen, wie wir bald lernen werden.
Dividend mit Nullen am Ende
BearbeitenWenn der Dividend Nullen am Ende hat, kann man sich ein paar Schritte sparen. Schauen wir ein Beispiel:
Schauen wir jetzt, wie die richtige Regel lautet:
Man kann also die Division aufhören und die restlichen Nullen erst dann schreiben, wenn der Rest zum ersten Mal Null ist!
Wenn der Divisor auch Nullen am Ende hat, kann man vom beiden Divisor und Dividend so viele Nullen streichen, wie die Nullen des Divisors und erst dann die Division durchführen. Beispielsweise ist 7910000:400=79100:4 (in beiden Fällen ist das Ergebnis 19775). Warum das so ist, kann man erst verstehen, wenn man das Kürzen von Brüchen gelernt hat, daher lernen wir es hier zunächst einmal einfach so, als Regel...
Division mit Null in der Mitte des Ergebnisses
Bearbeiten
Division mit Null am Anfang des Ergebnisses
Bearbeiten
Dividend mit Komma (einfach)
BearbeitenWas ist, wenn der Divident schon Nachkommastellen hat? In diesem Fall wird die Division, wie wir sie bisher gelernt haben, mit einer Änderung durchgeführt: Wenn zur nächsten Ziffer nach dem Komma gesprungen werden muss, dann muss man erst ein Komma im Ergebnis schreiben. In unserem Fall ist es nicht wenn man die Ziffer 9 im Dividend erreicht. Das Komma muss geschrieben werden, erst bevor man die nächste Ziffer nach dem Komma (hier die Ziffer 2) runter bringen muss. Erst dann schreibt man das Komma und dann macht man die Rechnung (12:3) und dann schreibt man das Ergebnis dieser Rechnung (4) nach dem Komma. Es gibt kein anderes Komma in der Zahl (also auf gar keinen Fall irgendwo ein zweites Komma schreiben). Eine Bemerkung noch: Den letzten Rest haben wird hier mit (R) in Klammern geschrieben. Den Begriff Rest benutzt man eigentlich bei ganzzahligen Divisionen (mit Zahlen ohne Nachkommastellen)[1]. 0 ist hier der Teilrest der letzten Teildivision (12:4=3 R 0). Wenn bei einer Division mit Nachkommastellen im Ergebnis Teilrest 0 hat, kann man mit der Division aufhören. Das ist allerdings nur selten der Fall, wie wir gleich lernen werden. |
Divisor mit Komma (einfach)
BearbeitenWas ist, wenn der Divisor Nachkommastellen hat, wie zum Beispiel in 236,2875:0,5? In diesem Fall wird das Komma sowohl im Divisor als auch im Dividenden so oft nach rechts verschoben, bis der Divisor keine (notwendige) Kommastelle mehr hat. In unserem Beispiel, wenn das Komma im Divisor (0,5) ein Mal nach rechts verschoben wird, bekommt man die Zahl 5, die keine Nachkommastellen hat. Das Komma wird dann auch im Dividenden (236,2875) ein Mal nach rechts verschoben (also der neue Dividend wird 2362,875 sein). Mit diesen neuen Zahlen kann man die Division ganz normal fortführen, wie im Bild am Rand. Der Prozess ist also:
|
Was ist, wenn der Dividend keine Nachkommastellen hat, beispielsweise 205:0,04?
In diesem Fall denkt man, dass ein Komma am Ende des Dividenden steht, und schreibt so viele Nullen wie notwendig nach dem Komma: 205=205,00 (allerdings gilt auch 205=205,00000 und so weiter). Dann wird der Vorgang wie vorher durchgeführt:
|
Ein letztes Beispiel: 205:0,0004. Hier muss man das Komma sogar viermal verschieben:
|
Dividend ohne Komma, Ergebnis mit Komma (mit Null Rest)
BearbeitenDividend ohne Komma, Ergebnis mit Komma (periodisch)
BearbeitenBisher war es fast immer in den Beispielen so, dass der Teilrest am Ende Null war. Das war kein Zufall, die Beispiele wurden einfach so gewählt, damit sie verständlicher sind. In der Regel ist der Teilrest keine genaue Zahl. Probieren wir es mit dem folgenden Beispiel:
Division Kombinationen
BearbeitenHier finden wir ein paar weiterführende Beispiele zur Vertiefung der Kenntnissen.
Probieren wir erst die Division 3706,1:0,00007. Wenn der Divisor ein Komma hat (wie hier 0,00007), dann muss man das Komma sowohl im Divisor also auch im Dividenden so oft nach rechts verstellen, bis der Divisor keine Nachkommastellen mehr hat. Falls der Dividend dann nicht genügende Nachkommastellen hat, werden sie mit Nullen nachgefüllt. Daher ist 3706,1:0,00007 gleich so viel wie 370610000:7
3706,1:0,00007=370610000:7
Letztere Division führen wir auch im Bild durch. Wir fangen dann mit dem Hauptvorgang (in verkürzter Darstellung) an. Da die erste Stelle des Dividenden (3) kleiner als der Divisor ist, kann man weitere Ziffer des Dividenden benutzen (also 37), weil Nullen am Anfang des Ergebnisses (und nur dort) keine Rolle spielen. Diese zwei Stellen wurden mit Hellblau markiert. Da, wo die rote Stelle und der rote rechts-Pfeil im Bild ist, kann man weitere Nullen einführen, nachdem erst ein Komma im Ergebnis geschrieben wird (roter nach-oben-Pfeil und Komma im Ergebnis). Mit Lila (um dem Teildividenden 30) wird darauf aufmerksam gemacht, dass das Ergebnis doch periodisch ist (also der Teildividend 30 und alle andere Teildividenten, die nach ihm kommen, in der gleichen Reihe immer wiederholt vorkommen). Die Periode, wie im Ergebnis wieder mit Lila notiert, ist die Zifferfolge 428591.
Da man aber die Periode im Ergebnis erst nach dem Komma notiert wird, schreibt man nicht
(falsch), sondern
(richtig).
Im vorherigen Beispiel haben wir eine Division durch 11 gesehen. Da bestand die Periode aus zwei Ziffern (27). Im letzten Beispiel (Division durch 7) bestand die Periode aus sechs Ziffern (914285). Bei einer anderen Division (durch 4), gab es wieder keine Periode. Es kann also eine Periode geben oder nicht, und sie kann lang oder kurz sein. Im folgenden Beispiel (938:23) haben wir die Periode nicht mal angegeben, da sie schon aus 22 Ziffern(!) besteht. Es gibt einen Beweis dafür, dass wenn der Divisor und der Dividend ganze Zahlen sind (oder sein können), immer eine Periode entsteht (also eine wiederholte Reihenfolge von Ziffern nach dem Komma) oder ein Teilrest Null (also die Division kann aufhören). Diese Periode kann sehr lang sein, es gibt sie aber in diesem Fall immer.
Im folgenden Beispiel lernen wir allerdings auch dazu genauer, wie man die Division durchführt, wenn der Divisor größer als 10 ist. Wir haben schon eine solche Division gesehen, aber noch nicht erklärt, wie das funktioniert.
Grundsätzlich gibt es hier nichts Neues. Man soll wieder die Grundschritten durchführen:
- ↓ Ziffer runter (ganz links anfangen)
- ÷ was runter Steht durch den Divisor dividieren ("wie oft der Divisor in den Teildividenden hineinpasst")
- × das Ergebnis der Division mit dem Divisor multiplizieren
- − dieses Produkt von dem, was "runter steht" subtrahieren.
Nun aber werden diese Schritte irgendwo am Rand durchgeführt und jeweils unter dem Teildividenden das Ergebnis der Subtraktion am Ende geschrieben.
- Schritt ↓ Ziffer runter: Weil die erste Ziffer im Dividend (9) kleiner als der Divisor (23) ist, nehmen wir am Anfang die ersten zwei Ziffer des Dividenden (93)
- Schritt ÷ dividieren: 23 passt in 93 viermal hinein (das kann man allerdings bei größeren Zahlen nur raten und ausprobieren). Wie erste Ziffer des Ergebnisses wird daher 4 sein.
- Schritt × multiplizieren: Die letzte Ziffer des Ergebnisse (4) wird mit dem Divisor multipliziert: 4×23=92.
- Schritt − subtrahieren: Das Ergebnis der Multiplikation (92) wird aus dem vorläufigen Teildividenden (93) subtrahiert (93−92=1). Allein das Ergebnis der Subtraktion (hier 1) wird dann unter den Teildividenden geschrieben. Im Bild haben wir allerdings die zwei letzten Schritten am Rand links zusammengefasst (93−4×23=1).
Diese Schritte werden dann wiederholt, bis man irgendwann die Periode entdeckt. Hier haben wir allerdings schon ziemlich bald aufgehört (wie schon erwähnt, ist die Periode in diesem Beispiel sehr lang...).
Im folgenden Beispiel ist der Divisor wieder größer als 10, wir haben aber hier die Teilschritte des Hauptvorgangs (↓ ÷ × −) nicht am Rand geschrieben. Die Division lautet 4,52:1,3, man soll also erst das Komma verschieben: 4,52:1,3=45,2:13. Letztere Division wird im Bild gezeigt. Wieder muss man mit zwei Ziffern anfangen. Sofort nach der ersten Ziffer im Ergebnis muss man ein Komma schreiben (roter Pfeil). Und wieder gibt es eine Periode (wenn der Teildividend 100 wiederholt wird), die Ziffernfolge 769230. Die Periode besteht hier (wie bei der Division durch 7 am Anfang dieses Teilkapitels) aus sechs Ziffern. Also . Hier ist zu beachten, dass nicht alle Ziffern nach dem Komma die Periode sind! Die Periode fängt in diesem Fall erst nach der ersten Nachkommastelle an.
Wenn allerdings die Division 0,0452:13 durchgeführt wird, muss man im Ergebnis schon mit Null und Komma anfangen (Bild links)! Der Rest des Vorgangs bleibt unverändert. Vorsicht aber: in diesem Fall (wenn Komma schon am Anfang steht), darf man Nullen nicht auslassen! Die Periode allerdings fängt in diesem Fall noch weitere Stellen nach dem Komma an: .
Bei der Division 330,103:11 (links) finden wir noch ein paar Neuigkeiten. Die Periode besteht zwar wieder aus zwei Ziffern wie in der vorherigen Division durch 11, diesmal sind es aber die Ziffern 36 (und nicht 27). Es gibt in dieser Division einige Nullen dazwischen, die man selbstverständlich NICHT auslassen darf und dazu ein Komma unter diesen Nullen.
Bei der Division 391,204:11 (rechts) stellt man fest, dass die Division durch 11 sogar auch genau ausgehen kann (das stimmt ja für alle Divisoren, die ganzzahlig, also ohne Komma, sind). Wenn der Teilrest Null ist, ist der Vorgang fertig. Wann die Division durch bestimmte Zahlen genau aufgeht, lernt man im Kapitel über Teilbarkeit.
Im letzten Beispiel können wir sehen, dass die Periode auch nur eine Ziffer sein kann (hier 6). In diesem Beispiel fängt die Periode wieder erst an der dritten Nachkommastelle an. Man schreibt: