Gesetze der Logik – Serlo „Mathe für Nicht-Freaks“
Im Folgenden haben wir die wichtigsten Gesetze der Logik für dich zusammengefasst. Für Aussagen nutzen wir die Buchstaben , und , für Aussageformen , , usw.
AussagenlogikBearbeiten
Die Richtigkeit dieser Gesetze kann mit Wahrheitstabellen bewiesen werden.
AssoziativgesetzeBearbeiten
Bei der Disjunktion und bei der Konjunktion ist es egal, in welcher Reihenfolge du die Aussagen auswertest:
KommutativgesetzeBearbeiten
Bei der Disjunktion und bei der Konjunktion ist es egal, in welcher Reihenfolge die einzelnen Teilaussagen verknüpft werden. Dies ist in der deutschen Sprache nicht unbedingt der Fall. Betrachte dazu folgende zwei Aussagen, welche in der Bedeutung einen leichten Unterschied aufweisen: „Ralf aß Haferbrei und er bekam Bauchschmerzen“ und „Er bekam Bauchschmerzen und Ralf aß Haferbrei“.
DistributivgesetzeBearbeiten
Eine Disjunktion kann in eine Konjunktion hineingezogen werden und umgekehrt.
AbsorptionsgesetzeBearbeiten
IdempotenzgesetzeBearbeiten
Doppelte VerneinungBearbeiten
Satz vom ausgeschlossenen DrittenBearbeiten
- (lateinisch: tertium non datur, übersetzt: ein Drittes gibt es nicht.)
Satz vom WiderspruchBearbeiten
Durch Anwendung der de Morganschen Regel, der doppelten Verneinung und der Kommutativität lässt sich der Satz vom Widerspruch in den Satz vom ausgeschlossenen Dritten umformen:
Die de-Morgansche RegelBearbeiten
Bei der Negation einer Und- beziehungsweise einer Oder-Verknüpfung wird die Negation reingezogen und die Klammer aufgelöst. Aus einem wird dabei ein und umgekehrt.
Negation von Implikation und ÄquivalenzBearbeiten
Prinzip der KontrapositionBearbeiten
Diese Äquivalenz wird oft genutzt, um eine Implikation zu beweisen, Redewendung: Beweis der Kontraposition.
Beweis durch WiderspruchBearbeiten
Auch mit Hilfe der folgenden Äquivalenz kann eine Implikation bewiesen werden, Redewendung: Beweis durch Widerspruch.
Darstellung von Implikation und ÄquivalenzBearbeiten
Mit Hilfe dieser Gesetze kann die Implikation und die Äquivalenz auf Aussagen mit anderen Junktoren zurückgeführt werden.
Gesetze mit Wahr und FalschBearbeiten
Im Folgenden steht für „wahr“ und für „falsch“. und können als 0-stellige Junktoren angesehen werden.
- (Aus Falschem folgt Beliebiges.)
- (Wird gelegentlich als Definition für verwendet.)
PrädikatenlogikBearbeiten
Negation von quantifizierten AussagenBearbeiten
Äquivalenzen über quantifizierte AussagenBearbeiten
- (Distributivität mit )
- (Distributivität mit )
- (Umschreibung des eindeutigen Existenzquantors)
Implikationen über quantifizierte AussagenBearbeiten
Hinweis
In der obigen Liste sind die Implikationen nicht umkehrbar.