Ungleichheitszeichen: (Latex PNG), ≠ (HTML Entity)

Beispiel: Wachstumsentwicklung einer Population von Getreidekapuzinern

Bearbeiten

Wir wollen uns der Interpolationsproblematik mit einem Beispiel aus der Biologie nähern.[1]

 
Getreidekapuziner

Viele Insekten können in kleinen Gefäßen gezüchtet werden, so beispielsweise auch Getreidekapuziner. Unter optimalen Bedingungen dauert der Entwicklungszyklus dieses Schädlings aus der Familie der Bohrkäfer ca. 25 Tage. In einem Futterkasten werden den Käfern durch ständige Reinigung und ausreichend Nachschub an Getreidekörnern nahezu konstante Umweltbedingungen geboten.

Ausgehend von einem Pärchen zählt man nun in Abständen von ungefähr zwei Wochen jeweils die vorhandenen ausgewachsenen Käfer. Dabei kommt ein Datenmaterial zustande, dass in etwa wie folgt aussieht:

Tage: 0 14 28 35 42 49 63 77 91 105 119 133 161 175 189 203 231 245 259
Anzahl der Käfer: 2 2 2 3 17 65 119 130 175 205 261 302 315 333 350 332 333 335 330

In der folgenden Grafik sind diese Daten im Koordinatensystem dargestellt:

Datei:Getreidekapuziner raw.svg

Die Aufgabe des Mathematikers besteht nun darin, ein passendes mathematisches Modell zu finden, dass diese Daten beschreibt. Gegeben sind also Zeitpunkte

 

und jeweils dazugehörige Käferzahlen

 

Ein mögliches mathematisches Modell kann nun beispielsweise eine mathematische Funktion sein, deren Graph genau durch die gemessenen Punkte geht. Relativ einfache Funktionen, mit denen das klappen könnte, sind Polynome. Gesucht ist also ein Polynom   mit

 

Literatur

Bearbeiten
  1. Erich Bohl: Mathematische Grundlagen für die Modellierung biologischer Vorgänge Springer, Berlin (1987), ISBN 978-3540181095.