Aufgabensammlung Physik: Lagrange Bewegungsgleichungen eines Teilchens im elektromagnetischen Potential
Berechne mithilfe der Lagrangegleichungen 2. Art die Bewegungsgleichung eines freien Teilchens, das sich in einem elektromagnetischen Potential bewegt.
Lösung
Ein Teilchen mit der Masse , und Ladung bewegt sich durch ein Potential , mit , als generalisierten Koordinaten.
Für dieses Teilchen soll die generalisierte Kraft berechnet werden.
Die generalisierte Kraft kann für jede generalisierte Koordinate einzeln berechnet werden, man erhält also:
Nebenrechnungen |
|
Die berechnete, generalisierte Kraft ist also die Lorentzkraft, die auf eine Punktladung wirkt.