Astronomische Berechnungen für Amateure/ Positionsastronomie/ Positionswinkel

In der Doppelsternastronomie, für die Beobachtung und Vermessung von Planetenphänomen oder bei der Angabe der Bewegungsrichtung von Asteroiden, Kometen und Meteore, sind die bisher betrachteten Koordinatensysteme nicht sehr nützlich. In solchen Fällen wählt man für eine Ortsbestimmung einen anderen Weg: Zunächst bestimmt man einen eindeutigen Punkt, der als Zentrum dient. Dies kann die Mitte der Planeten- oder Mondscheibe sein, bei Doppelsternen die hellere der beiden Komponenten, oder allgemein ein heller Referenzstern. Durch diesen Punkt legt man eine eindeutige Richtung fest, um sich zu orientieren. In der Regel wird die Richtung nach Norden (am Himmel des Beobachters, nicht auf dem Objekt) gewählt. Die Position eines Phänomens wird nun durch zwei Grössen angegeben: die Länge des Abstandsvektors vom Zentrum zu diesem Punkt, meist in Bogensekunden oder Bogenminuten angegeben, und dem Winkel, den der Abstandsvektor mit der festgelegten Nullrichtung bildet. Dieser Winkel heisst Positionswinkel, wird von Norden über Osten und Süden nach Westen gemessen (also im Gegenuhrzeigersinn) und kann Werte zwischen 0 und 360° annehmen.


Beispiel:

Alcor (80 UMa), das „Reiterlein“ ist ein Stern der Helligkeit 4m und bildet mit Mizar (ζ UMa oder 79 UM), dem mittleren Stern der Deichsel im Grossen Wagen, ein Doppelsternsystem. Ob sie „nur“ ein optisches oder ein physisches Doppelsternsystem bilden, ist umstritten. Bezüglich des helleren Hauptsterns Mizar (Helligkeit 2.2m) hat Alcor folgende Koordinaten: Abstand 11.8' (708.5"), Positionswinkel 71°. Mizar ist selber ein echter Doppelstern. Sein Begleiter Mizar B mit der Helligkeit 3.9m befindet sich 14.3" vom Hauptstern entfernt beim Positionswinkel 153°. Während Mizar und Alcor von blossem Auge als zwei Sterne unterschieden werden können, ist die Auflösung von Mizar A und B eine Aufgabe für Teleskope.

Ebenso wird die Mitte des beleuchteten Teils eines Planetenscheibchens, die Lage der Hörner des zu- oder abnehmenden Mondes oder die Position eines Sonnenflecks auf der Sonnenscheibe durch den Positionswinkel bestimmt. Im Falle des Sonnenflecks oder eines Details auf einem Planetenscheibchen kommt noch der Abstand vom Zentrum der Scheibe hinzu.


Haben die beiden Objekte die äquatorialen Koordinaten [α1, δ1] bzw. [α2, δ2], dann lässt sich der Positionswinkel P über folgende Beziehung berechnen:



Der Abstand der beiden Objekte voneinander lässt sich wie folgt berechnen:



Wenn allerdings der Abstand ψ allzu klein wird, dann ist es besser, die Aufgabe mit Mitteln der ebenen Geometrie zu lösen: der Abstand ist dann die Hypotenuse in einem rechtwinkligen Dreieck, dessen Katheten (δ2 – δ1) und (α2 – α1)∙cos δ betragen, wo δ der Mittelwert von δ1 und δ2 beträgt. Mit dem Korrekturfaktor cos δ wird berücksichtigt, dass die Meridiane gegen den Pol hin zusammen laufen, also ihr Abstand – gemessen auf einem Breitenkreis – immer kleiner wird. Positionswinkel und Abstand berechnen sich dann zu:




Übungen

  • Berechnen und verifizieren Sie Abstand und Positionswinkel für Mizar und Alcor mit beiden vorgestellten Verfahren: α1 = 13h 23m 55.5s; δ1 = 54° 55' 31“ (Mizar); α2 = 13h 25m 13.5s; δ2 = 54° 59' 17“ (Alcor).
  • Berechnen Sie den Abstand und den Positionswinkel für den Doppelstern α1 Librae (HD 130 819; 5.3m) α1 = 14h50m 41.206s; δ1 = –15° 59' 50.32“; α2 Librae Zuben Elgenubi (HD 130 841, 2.75m) α2 = 14h 50m 52.713s ; δ2 = –16° 02' 30.42“
  • Die Verbindungslinie der „Hörner“ des Mondes hat den Positionswinkel 115°, die Mitte des beleuchteten Mondrandes 205°. Der Bruchteil des Monddurchmessers, der beleuchtet ist, beträgt 0.4 = 40%. Skizzieren Sie die Situation. Um was für eine Mondphase handelt es sich?
  • Ein Sonnenfleck habe Positionswinkel 240° und Abstand 10' 42" vom Sonnenzentrum. Die Rotationsachse der Sonne habe den Positionswinkel +15°. Skizzieren Sie den Anblick sowie die ungefähre Bahn des Sonnenflecks infolge der Sonnenrotation im umkehrenden Fernrohr.