Astronomische Berechnungen für Amateure/ Positionsastronomie/ Astronomische Koordinatensysteme

Wie dargelegt wurde, ist eine Orientierung mittels rechtwinkliger kartesischer Raumkoordinaten oder mittels Kugelkoordinaten möglich. Die daraus resultierenden Orientierungssysteme der Astronomie sollen nun kurz vorgestellt werden.

Räumliche kartesische Koordinaten werden in der Praxis nur für Bewegungen im Sonnensystem gebraucht. Dabei handelt es sich um das System der kartesischen Ekliptikkoordinaten [X, Y, Z]. Der Ursprung liegt entweder in der Sonne bzw. genauer im Schwerpunkt des Sonnensystems (der praktisch mit dem Sonnenzentrum zusammenfällt: heliozentrische Koordinaten) oder im Erdmittelpunkt (geozentrische Koordinaten). Die X-Achse zeigt in Richtung auf den Frühlingspunkt , die Y-Achse im rechten Winkel dazu in Richtung des Sommerpunktes, und die Z-Achse zum nördlichen Ekliptikpol.

Kommen stattdessen ekliptikale Kugelkoordinaten zum Einsatz, so handelt es sich den heliozentrischen Abstand r des Objektes vom Sonnenmittelpunkt bzw. um den geozentrischen Abstand Δ vom Erdmittelpunkt oder vom Schwerpunkt des Systems Erde – Mond; um die vom Frühlingspunkt aus gemessene ekliptikale Länge l (heliozentrisch) bzw. λ (geozentrisch); um die von der Ekliptik aus gemessene ekliptikale Breite b (heliozentrisch) bzw. β (geozentrisch) – positiv in Richtung des nördlichen Ekliptikpols, negativ in Richtung des südlichen Ekliptikpols.

Das bewegliche oder rotierende Äquatorsystem ist wie folgt definiert: der Ursprung ruht im Erdmittelpunkt. Die erste Achse zeigt in Richtung auf den Frühlingspunkt ; die zweite Achse im rechten Winkel dazu in Richtung eines Punktes im Sternbild Orion, östlich der Gürtelsterne; die dritte Achse zum Himmelsnordpol. Für Objekte im Sonnensystem ist der Abstand die geozentrische Entfernung Δ vom Ursprung, für alle übrigen Objekte interessiert in der Regel nur die Richtung. Diese wird durch die beiden Winkel α (bzw. RA[1]) und δ bestimmt: α ist die Rektaszension, wird auf dem Himmelsäquator vom Frühlingspunkt aus gemessen als Winkel zwischen dem Grosskreis durch den Frühlingspunkt und den Himmelsnordpol und dem Grosskreis durch das Objekt und den Himmelsnordpol. Als Besonderheit wird die Rektaszension in der Regel nicht in Grad, sondern in Stunden angegeben. Dabei gilt: 360° ≙ 24h, 15° ≙ 1h, 1° ≙ 4m, 15' ≙ 1m, 1' ≙ 4s, 15" ≙ 1s und 1" ≙ 1/15s. δ ist die Deklination und wird vom Himmelsäquator aus gemessen, positiv in Richtung zum Himmelsnordpol, negativ in Richtung zum Himmelssüdpol.

Das feste Äquatorsystem ist auf den Beobachter bezogen: der Ursprung liegt im Erdmittelpunkt (selten) oder im Ort, in dem sich der Beobachter befindet (Topozentrum; die Regel). Wenn der Abstand interessiert, dann handelt es sich um die topozentrische Entfernung Δ'. Im folgenden beschränken wir uns auf die Beschreibung der Situation auf der Nordhalbkugel der Erde. Die erste Achse zeigt zu jenem Punkt am Himmelsgewölbe, wo der Himmelsäquator den Meridian des Beobachters schneidet, also in südlicher Richtung. Die zweite Achse zeigt im rechten Winkel dazu auf den Westpunkt am Horizont, und die dritte auf den Himmelsnordpol. Im Gegensatz zu den bisher vorgestellten Koordinatensystemen handelt es sich hier um ein linkshändiges System. Die eine Richtungskoordinate ist wie im rotierenden Äquatorsystem die Deklination δ, die vom Himmelsäquator aus gemessen wird. Die zweite Richtungskoordinate ist der Stundenwinkel τ. Es ist der Winkel zwischen dem Meridian, also dem Grosskreis vom Südpunkt über den Zenit und den Himmelsnordpol zum Nordpunkt, und jenem Grosskreis, der durch den Himmelsnordpol und das Objekt geht, gemessen auf dem Himmelsäquator vom Meridian aus westwärts. Wie die Rektaszension wird der Stundenwinkel üblicherweise in Zeiteinheiten angegeben. Der Stundenwinkel spiegelt direkt die scheinbare tägliche Bewegung der Himmelskörper als Folge der täglichen Rotation wieder. Hat ein Körper den Stundenwinkel τ = 0h, so sagt man, er kulminiere im oberen Kulminationspunkt auf dem Meridian. Ist der Körper die wahre (bzw. mittlere) Sonne, so entspricht dies dem wahren (bzw. mittleren) Mittag. Ist τ = 12h, so sagt man, der Körper kulminiere im unteren Kulminationspunkt auf dem Meridian. Im Laufe eines Tages wächst der Stundenwinkel abgesehen von der Eigenbewegung des Körpers um 24h.


Im Horizontsystem liegt der Ursprung beim Beobachter. Die erste Achse zeigt zum Südpunkt am Horizont, die zweite Achse im rechten Winkel dazu zum Westpunkt am Horizont, und die dritte Achse senkrecht nach oben zum Zenit. Auch das Horizontsystem ist ein linkshändiges System. Normalerweise werden nur die beiden Richtungskoordinaten betrachtet: die Höhe h wird vom Horizont aus gemessen, positiv in Richtung des Zenits, negativ in Richtung des Nadir. Wegen der praktischen Schwierigkeit, die Lage des (mathematischen) Horizonts genau bestimmen zu können, gibt man stattdessen oft den vom Zenit aus gemessenen Winkel z = 90° − h an, die sog. Zenitdistanz. z = 90° definiert den mathematischen Horizont, bei z > 90° befindet sich ein Objekt unterhalb des mathematischen Horizonts. Als zweite Richtungskoordinate wird das Azimut A angegeben. Es handelt sich hierbei um den Winkel zwischen dem Meridian und dem Grosskreis durch das Objekt und den Zenit, gemessen auf dem Horizont von Süd über West, Nord nach Ost[2]. Die obere Kulmination erfolgt im allgemeinen bei A = 0°, die untere bei A = 180°. Sterne, die zwischen dem Zenit und dem Himmelsnordpol durch die obere Konjunktion gehen, haben sowohl für die obere wie für die untere Kulmination A = 180°. Sterne, die zwischen dem Nadir und dem Himmelssüdpol durch die untere Konjunktion gehen, haben sowohl für die obere wie für die untere wie für die obere Konjunktion A = 0°.


Gelegentlich wird auch das galaktische Koordinatensystem benutzt. Es wurde erst 1958 von der IAU festgelegt. Sein Zentrum liegt im Sonnenmittelpunkt. Die erste Achse zeigt in Richtung zum Zentrum der Milchstrasse mit den äquatorealen Koordinaten α = 17h 42.4m, δ = −28.92°. Dieser Punkt liegt im Sternbild Schütze nahe der Radioquelle Sagittarius A. Die zweite Achse zeigt im rechten Winkel dazu in die Gegend zum Sternbild Schwan; die Drehung erfolgt entlang dem galaktischen Äquator. Die dritte Achse zeigt zum galaktischen Nordpol, mit den Koordinaten α = 12h 49m, δ = +27.40° im Sternbild Haar der Berenike (Coma Berenices) gelegen. Die angegebenen Koordinaten beziehen sich auf die Epoche B1950.0. Die beiden Richtungskoordinaten des galaktischen Koordinatensystems sind die galaktische Länge l (0° ≤ l < 360°), gemessen von der ersten Achse aus entlang des galaktischen Äquators, und die galaktische Breite b vom galaktischen Äquator aus positiv in Richtung zum galaktischen Nordpol, negativ zum galaktischen Südpol (−90° ≤ b ≤ +90°). Im Internet kann ein Programm heruntergeladen werden, das für galaktische Objekte direkt die galaktischen Koordinaten und damit die Lage in der Milchstrasse direkt visualisiert. Das englischsprachige Tool kann hier gefunden werden.

Horizontsystem und ruhendes Äquatorsystem werden für die Beobachtung benutzt, da sie dem Beobachter unmittelbar eine Information über den Ort und damit die Sichtbarkeit eines Objektes an seiner Himmelskugel liefern. Für ein parallaktisch montiertes Fernrohr benötigt man den Stundenwinkel und die Deklination. Für die Sichtbarkeit oder ein azimutal montiertes Fernrohr (Typ Dobson!) werden Azimut und Höhe bzw. Zenitdistanz benötigt. Insbesondere muss für die Sichtbarkeit h > 0° bzw. z < 90° sein. Das Ekliptiksystem wird in erster Linie bei himmelsmechanischen Problemen im Sonnensystem eingesetzt. Bewegliches Äquatorsystem und galaktisches System werden für Kataloge, Listen und Karten benutzt.


Übungen

  • Wandeln Sie die folgenden Rektaszensionswerte von Stunden in Grad bzw. in rad (Bogenmass) um: a) 18h; b) 3h; c) 5h 30m; d) 12h 45m; e) 7h 20m; f) 21h 12m 27s; g) 9h 44m 12.56s.
  • Wandeln Sie die folgenden Winkelwerte in Rektaszension mit Zeiteinheiten um: a) 270°; b) 60°; c) 90° 45'; d) 20° 22'; e) 321° 11' 55"; f) 9° 49' 22.57".



Nachweis:

  1. RA ist die Abkürzung für den englischen Ausdruck Right Ascension
  2. In der Navigation und in der Meteorologie wird das Azimut oft von Norden aus gemessen.