At first, we need to show that the exponential series converges at all:
Theorem (convergence of the exponential series)
The series
∑
k
=
0
∞
1
k
!
{\displaystyle \sum _{k=0}^{\infty }{\tfrac {1}{k!}}}
converges.
Proof (convergence of the exponential series)
We need to prove that the partial sums
(
s
n
)
n
∈
N
=
(
∑
k
=
0
n
1
k
!
)
n
∈
N
{\displaystyle (s_{n})_{n\in \mathbb {N} }=\left(\sum _{k=0}^{n}{\tfrac {1}{k!}}\right)_{n\in \mathbb {N} }}
converges. This can be done using the monotony criterion for sequences, where the partial sums
(
s
n
)
{\displaystyle (s_{n})}
form the sequence which we want to investigate.
Monotony is easy to see. Series elements are positive, so
s
n
+
1
=
∑
k
=
0
n
+
1
1
k
!
=
∑
k
=
0
n
1
k
!
+
1
(
n
+
1
)
!
⏟
≥
0
≥
∑
k
=
0
n
1
k
!
=
s
n
{\displaystyle s_{n+1}=\sum _{k=0}^{n+1}{\frac {1}{k!}}=\sum _{k=0}^{n}{\frac {1}{k!}}+\underbrace {\frac {1}{(n+1)!}} _{\geq 0}\geq \sum _{k=0}^{n}{\frac {1}{k!}}=s_{n}}
Hence,
(
s
n
)
{\displaystyle (s_{n})}
is monotonously increasing.
Boundedness from above can be shown by comparison to a geometric series with
q
=
1
2
<
1
{\displaystyle q={\tfrac {1}{2}}<1}
. For partial sums, we have
∑
k
=
0
n
1
k
!
=
∑
k
=
0
n
1
1
⋅
2
⋅
3
⋅
…
⋅
(
k
−
1
)
⋅
k
=
∑
k
=
0
n
1
2
⋅
3
⋅
…
⋅
(
k
−
1
)
⋅
k
↓
1
2
,
1
3
,
…
1
k
−
1
,
1
k
≤
1
2
≤
∑
k
=
0
n
1
2
⋅
2
⋅
…
⋅
2
⋅
2
⏟
(
k
−
1
)
times
=
∑
k
=
0
n
(
1
2
)
k
−
1
=
2
⋅
∑
k
=
0
n
(
1
2
)
k
≤
2
⋅
∑
k
=
0
∞
(
1
2
)
k
↓
geometric series with
q
=
1
2
=
2
⋅
1
1
−
1
2
=
2
⋅
2
=
4
{\displaystyle {\begin{aligned}\sum _{k=0}^{n}{\frac {1}{k!}}&=\sum _{k=0}^{n}{\frac {1}{1\cdot 2\cdot 3\cdot \ldots \cdot (k-1)\cdot k}}\\[0.5em]&=\sum _{k=0}^{n}{\frac {1}{2\cdot 3\cdot \ldots \cdot (k-1)\cdot k}}\\[0.5em]&\left\downarrow \ {\color {OliveGreen}{\frac {1}{2}},{\frac {1}{3}},\ldots {\frac {1}{k-1}},{\frac {1}{k}}\leq {\frac {1}{2}}}\right.\\[0.5em]&\leq \sum _{k=0}^{n}\underbrace {\frac {1}{2\cdot 2\cdot \ldots \cdot 2\cdot 2}} _{(k-1){\text{ times}}}\\[0.5em]&=\sum _{k=0}^{n}\left({\frac {1}{2}}\right)^{k-1}\\[0.5em]&=2\cdot \sum _{k=0}^{n}\left({\frac {1}{2}}\right)^{k}\\[0.5em]&\leq 2\cdot \sum _{k=0}^{\infty }\left({\frac {1}{2}}\right)^{k}\\[0.5em]&\left\downarrow \ {\color {OliveGreen}{\text{geometric series with }}q={\frac {1}{2}}}\right.\\[0.5em]&=2\cdot {\frac {1}{1-{\frac {1}{2}}}}\\[0.5em]&=2\cdot 2=4\end{aligned}}}
Hence,
(
s
n
)
{\displaystyle (s_{n})}
is bounded from above by
4
{\displaystyle 4}
. So the monotony criterion implies convergence.
Now, we show that the exponential series indeed converges towards Euler's number
e
{\displaystyle e}
. This is done using the squeeze theorem by "squeezing" the partial sums
(
s
n
)
n
∈
N
=
(
∑
k
=
0
n
1
k
!
)
n
∈
N
{\displaystyle (s_{n})_{n\in \mathbb {N} }=\left(\sum _{k=0}^{n}{\tfrac {1}{k!}}\right)_{n\in \mathbb {N} }}
between the sequences
(
(
1
+
1
n
)
n
)
n
∈
N
{\displaystyle ((1+{\tfrac {1}{n}})^{n})_{n\in \mathbb {N} }}
and
(
(
1
+
1
n
)
n
+
1
)
n
∈
N
{\displaystyle ((1+{\tfrac {1}{n}})^{n+1})_{n\in \mathbb {N} }}
. Both bounding sequences converge to
e
{\displaystyle e}
, so we get the desired result.
That means, we need to show:
(
1
+
1
n
)
n
≤
∑
k
=
0
n
1
k
!
≤
(
1
+
1
n
)
n
+
1
{\displaystyle (1+{\tfrac {1}{n}})^{n}\leq \sum _{k=0}^{n}{\frac {1}{k!}}\leq (1+{\tfrac {1}{n}})^{n+1}}
Theorem (limit of the exponential series)
There is
∑
k
=
0
∞
1
k
!
=
e
{\displaystyle \sum _{k=0}^{\infty }{\frac {1}{k!}}=e}
.
Proof (limit of the exponential series)
We show
(
1
+
1
n
)
n
≤
∑
k
=
0
n
1
k
!
≤
(
1
+
1
n
)
n
+
1
{\displaystyle (1+{\tfrac {1}{n}})^{n}\leq \sum _{k=0}^{n}{\frac {1}{k!}}\leq (1+{\tfrac {1}{n}})^{n+1}}
and use the
squeeze theorem :
1st inequality:
(
1
+
1
n
)
n
≤
∑
k
=
0
n
1
k
!
{\displaystyle (1+{\tfrac {1}{n}})^{n}\leq \sum _{k=0}^{n}{\tfrac {1}{k!}}}
. This is easier to establish than the second one. We need the binomial theorem
(
1
+
x
)
n
=
∑
k
=
0
n
(
n
k
)
x
k
{\displaystyle (1+x)^{n}=\sum _{k=0}^{n}{\binom {n}{k}}x^{k}}
with
x
=
1
n
{\displaystyle x={\tfrac {1}{n}}}
.
(
1
+
1
n
)
n
=
binomial
theorem
∑
k
=
0
n
(
n
k
)
1
n
k
=
∑
k
=
0
n
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋅
…
⋅
(
n
−
k
+
1
)
k
!
⋅
1
n
k
=
∑
k
=
0
n
n
⋅
(
n
−
1
)
⋅
(
n
−
2
)
⋅
…
⋅
(
n
−
k
+
1
)
n
⋅
n
⋅
n
⋅
…
⋅
n
⋅
1
k
!
=
∑
k
=
0
n
n
n
⋅
n
−
1
n
⋅
n
−
2
n
⋅
…
⋅
n
−
k
+
1
n
⏟
≤
1
⋅
1
k
!
≤
∑
k
=
0
n
1
k
!
{\displaystyle {\begin{aligned}\left(1+{\frac {1}{n}}\right)^{n}&{\underset {\text{theorem}}{\overset {\text{binomial}}{=}}}\sum _{k=0}^{n}{\binom {n}{k}}{\frac {1}{n^{k}}}\\[0.5em]&=\sum _{k=0}^{n}{\frac {n\cdot (n-1)\cdot (n-2)\cdot \ldots \cdot (n-k+1)}{k!}}\cdot {\frac {1}{n^{k}}}\\[0.5em]&=\sum _{k=0}^{n}{\frac {n\cdot (n-1)\cdot (n-2)\cdot \ldots \cdot (n-k+1)}{n\cdot n\cdot n\cdot \ldots \cdot n}}\cdot {\frac {1}{k!}}\\[0.5em]&=\sum _{k=0}^{n}\underbrace {{\frac {n}{n}}\cdot {\frac {n-1}{n}}\cdot {\frac {n-2}{n}}\cdot \ldots \cdot {\frac {n-k+1}{n}}} _{\leq 1}\cdot {\frac {1}{k!}}\\[0.5em]&\leq \sum _{k=0}^{n}{\frac {1}{k!}}\end{aligned}}}
2nd inequality:
(
1
+
1
n
)
n
+
1
≥
∑
k
=
0
n
1
k
!
{\displaystyle (1+{\tfrac {1}{n}})^{n+1}\geq \sum _{k=0}^{n}{\tfrac {1}{k!}}}
. Her, we additionally need the Bernoulli inequality
(
1
+
x
)
n
≥
1
+
n
x
{\displaystyle (1+x)^{n}\geq 1+nx}
for
x
≥
−
1
{\displaystyle x\geq -1}
. In addition, a telescoping sum will appear in the end of the proof.
(
1
+
1
n
)
n
+
1
=
binomial
theorem
∑
k
=
0
n
+
1
(
n
+
1
k
)
1
n
k
=
1
+
∑
k
=
1
n
+
1
(
n
+
1
k
)
1
n
k
↓
index shift
=
1
+
∑
k
=
0
n
(
n
+
1
k
+
1
)
1
n
k
+
1
=
1
+
∑
k
=
0
n
(
n
+
1
)
⋅
n
⋅
(
n
−
1
)
⋅
…
⋅
(
n
−
k
+
1
)
(
k
+
1
)
!
⋅
1
n
k
+
1
=
1
+
∑
k
=
0
n
(
n
+
1
)
⋅
n
⋅
(
n
−
1
)
⋅
…
⋅
(
n
−
(
k
−
1
)
)
n
⋅
n
⋅
n
⋅
…
⋅
n
⋅
1
(
k
+
1
)
!
↓
n
+
1
,
n
,
n
−
1
,
…
n
−
(
k
−
1
)
≥
n
−
(
k
−
1
)
≥
1
+
∑
k
=
0
n
(
n
−
(
k
−
1
)
)
k
+
1
n
k
+
1
⋅
1
(
k
+
1
)
!
=
1
+
∑
k
=
0
n
(
1
−
k
−
1
n
)
k
+
1
⋅
1
(
k
+
1
)
!
↓
Bernoulli's inequality with
x
=
−
k
−
1
n
≥
−
1
≥
1
+
∑
k
=
0
n
(
1
−
(
k
+
1
)
(
k
−
1
)
n
)
⋅
1
(
k
+
1
)
!
↓
Linearity of the sum
=
1
+
∑
k
=
0
n
1
(
k
+
1
)
!
−
1
n
∑
k
=
0
n
(
k
+
1
)
(
k
−
1
)
(
k
+
1
)
!
↓
Index shift (1st sum), cancellation (2nd sum)
=
1
+
∑
k
=
1
n
+
1
1
k
!
−
1
n
∑
k
=
0
n
(
k
−
1
)
k
!
↓
1
=
1
1
!
and factor out the
n
+
1
-th summand of the sum for
k
=
0
and
k
=
1
for the 2nd sum.
=
∑
k
=
0
n
1
k
!
+
1
(
n
+
1
)
!
⏟
≥
0
−
1
n
[
−
1
+
0
+
∑
k
=
2
n
(
k
−
1
)
k
!
]
↓
re-formulate the fraction within the 2nd sum and use
k
k
!
=
1
(
k
−
1
)
!
≥
∑
k
=
0
n
1
k
!
−
1
n
[
−
1
+
∑
k
=
2
n
(
1
(
k
−
1
)
!
−
1
k
!
)
]
↓
telescoping sum
∑
k
=
2
n
(
1
(
k
−
1
)
!
−
1
k
!
)
=
1
−
1
n
!
=
∑
k
=
0
n
1
k
!
−
1
n
[
−
1
+
1
−
1
n
!
]
=
∑
k
=
0
n
1
k
!
+
1
n
⋅
n
!
⏟
≥
0
≥
∑
k
=
0
n
1
k
!
{\displaystyle {\begin{aligned}\left(1+{\frac {1}{n}}\right)^{n+1}&{\underset {\text{theorem}}{\overset {\text{binomial}}{=}}}\sum _{k=0}^{n+1}{\binom {n+1}{k}}{\frac {1}{n^{k}}}\\[0.5em]&=1+\sum _{k=1}^{n+1}{\binom {n+1}{k}}{\frac {1}{n^{k}}}\\[0.5em]&\left\downarrow \ {\color {OliveGreen}{\text{index shift}}}\right.\\[0.5em]&=1+\sum _{k=0}^{n}{\binom {n+1}{k+1}}{\frac {1}{n^{k+1}}}\\[0.5em]&=1+\sum _{k=0}^{n}{\frac {(n+1)\cdot n\cdot (n-1)\cdot \ldots \cdot (n-k+1)}{(k+1)!}}\cdot {\frac {1}{n^{k+1}}}\\[0.5em]&=1+\sum _{k=0}^{n}{\frac {(n+1)\cdot n\cdot (n-1)\cdot \ldots \cdot (n-(k-1))}{n\cdot n\cdot n\cdot \ldots \cdot n}}\cdot {\frac {1}{(k+1)!}}\\[0.5em]&\left\downarrow \ {\color {OliveGreen}n+1,n,n-1,\ldots n-(k-1)\geq n-(k-1)}\right.\\[0.5em]&\geq 1+\sum _{k=0}^{n}{\frac {(n-(k-1))^{k+1}}{n^{k+1}}}\cdot {\frac {1}{(k+1)!}}\\[0.5em]&=1+\sum _{k=0}^{n}\left(1-{\frac {k-1}{n}}\right)^{k+1}\cdot {\frac {1}{(k+1)!}}\\[0.5em]&\left\downarrow \ {\color {OliveGreen}{\text{Bernoulli's inequality with }}x=-{\frac {k-1}{n}}\geq -1}\right.\\[0.5em]&\geq 1+\sum _{k=0}^{n}\left(1-{\frac {(k+1)(k-1)}{n}}\right)\cdot {\frac {1}{(k+1)!}}\\[0.5em]&\left\downarrow \ {\color {OliveGreen}{\text{Linearity of the sum}}}\right.\\[0.5em]&=1+\sum _{k=0}^{n}{\frac {1}{(k+1)!}}-{\frac {1}{n}}\sum _{k=0}^{n}{\frac {(k+1)(k-1)}{(k+1)!}}\\[0.5em]&\left\downarrow \ {\color {OliveGreen}{\text{Index shift (1st sum), cancellation (2nd sum)}}}\right.\\[0.5em]&=1+\sum _{k=1}^{n+1}{\frac {1}{k!}}-{\frac {1}{n}}\sum _{k=0}^{n}{\frac {(k-1)}{k!}}\\[0.5em]&\left\downarrow \ {\color {OliveGreen}1={\frac {1}{1!}}{\text{ and factor out the }}n+1{\text{-th summand of the sum for }}k=0{\text{ and }}k=1{\text{ for the 2nd sum.}}}\right.\\[0.5em]&=\sum _{k=0}^{n}{\frac {1}{k!}}+\underbrace {\frac {1}{(n+1)!}} _{\geq 0}-{\frac {1}{n}}\left[-1+0+\sum _{k=2}^{n}{\frac {(k-1)}{k!}}\right]\\[0.5em]&\left\downarrow \ {\color {OliveGreen}{\text{re-formulate the fraction within the 2nd sum and use }}{\frac {k}{k!}}={\frac {1}{(k-1)!}}}\right.\\[0.5em]&\geq \sum _{k=0}^{n}{\frac {1}{k!}}-{\frac {1}{n}}\left[-1+\sum _{k=2}^{n}\left({\frac {1}{(k-1)!}}-{\frac {1}{k!}}\right)\right]\\[0.5em]&\left\downarrow \ {\color {OliveGreen}{\text{telescoping sum}}\sum _{k=2}^{n}\left({\frac {1}{(k-1)!}}-{\frac {1}{k!}}\right)=1-{\frac {1}{n!}}}\right.\\[0.5em]&=\sum _{k=0}^{n}{\frac {1}{k!}}-{\frac {1}{n}}\left[-1+1-{\frac {1}{n!}}\right]\\[0.5em]&=\sum _{k=0}^{n}{\frac {1}{k!}}+\underbrace {\frac {1}{n\cdot n!}} _{\geq 0}\\[0.5em]&\geq \sum _{k=0}^{n}{\frac {1}{k!}}\end{aligned}}}
In addition, we established
(
1
+
1
n
)
n
≤
∑
k
=
0
n
1
k
!
≤
(
1
+
1
n
)
n
+
1
{\displaystyle (1+{\tfrac {1}{n}})^{n}\leq \sum _{k=0}^{n}{\frac {1}{k!}}\leq (1+{\tfrac {1}{n}})^{n+1}}
. Since
lim
n
→
∞
(
1
+
1
n
)
n
=
lim
n
→
∞
(
1
+
1
n
)
n
+
1
=
e
{\displaystyle \lim _{n\to \infty }(1+{\tfrac {1}{n}})^{n}=\lim _{n\to \infty }(1+{\tfrac {1}{n}})^{n+1}=e}
, the squeeze theorem implies
lim
n
→
∞
∑
k
=
0
n
1
k
!
=
∑
k
=
0
∞
1
k
!
=
e
{\displaystyle \lim _{n\to \infty }\sum _{k=0}^{n}{\tfrac {1}{k!}}=\sum _{k=0}^{\infty }{\tfrac {1}{k!}}=e}
.
Alternatively, one may show
lim inf
n
→
∞
∑
k
=
0
n
1
k
!
≤
e
≤
lim sup
n
→
∞
∑
k
=
0
n
1
k
!
{\displaystyle \liminf _{n\to \infty }\sum _{k=0}^{n}{\tfrac {1}{k!}}\leq e\leq \limsup _{n\to \infty }\sum _{k=0}^{n}{\tfrac {1}{k!}}}
, which also implies
∑
k
=
0
∞
1
k
!
=
e
{\displaystyle \sum _{k=0}^{\infty }{\frac {1}{k!}}=e}
.
Further, the sequences
a
n
=
∑
k
=
0
n
1
k
!
{\displaystyle a_{n}=\sum _{k=0}^{n}{\tfrac {1}{k!}}}
and
b
n
=
∑
k
=
0
n
1
k
!
+
1
n
⋅
n
!
{\displaystyle b_{n}=\sum _{k=0}^{n}{\tfrac {1}{k!}}+{\tfrac {1}{n\cdot n!}}}
define nested intervals
(
I
n
)
n
∈
N
=
(
[
a
n
,
b
n
]
)
n
∈
N
{\displaystyle (I_{n})_{n\in \mathbb {N} }=([a_{n},b_{n}])_{n\in \mathbb {N} }}
, where the real number included in all intervals is exactly
e
{\displaystyle e}
.
The advantage if the exponential series compared to the sequences defining
e
{\displaystyle e}
is that one can achieve much faster convergence. For instance, with 10 elements
∑
k
=
0
10
1
k
!
≈
2.7182818011
{\displaystyle \sum _{k=0}^{10}{\tfrac {1}{k!}}\approx 2.7182818011}
which is an approximation precise up to 7 digits:
e
=
2.718281828
{\displaystyle e=2.718281828}
. By contrast, the 1000-th sequence element
(
1
+
1
1000
)
1000
=
2.7169239
{\displaystyle \left(1+{\tfrac {1}{1000}}\right)^{1000}=2.7169239}
is precise to only 2 digits after the comma.
Outlook: generalized exponential series
Bearbeiten