Solution
Subtask 1: This is a telescoping series with
a
k
=
k
{\displaystyle a_{k}={\sqrt {k}}}
. Taking a look at the partial sums we get
∑
k
=
1
n
(
k
+
1
−
k
)
=
n
+
1
−
1
{\displaystyle \sum _{k=1}^{n}\left({\sqrt {k+1}}-{\sqrt {k}}\right)={\sqrt {n+1}}-{\sqrt {1}}}
As
(
a
k
)
k
∈
N
{\displaystyle (a_{k})_{k\in \mathbb {N} }}
diverges, the series diverges as well.
Alternative solution: One can easily find a lower bound for the partial sum sequence:
s
n
=
∑
k
=
1
n
(
k
+
1
−
k
)
=
∑
k
=
1
n
(
k
+
1
−
k
)
(
k
+
1
+
k
)
k
+
1
+
k
=
∑
k
=
1
n
k
+
1
−
k
k
+
1
+
k
=
∑
k
=
1
n
1
k
+
1
+
k
≥
∑
k
=
1
n
1
k
+
1
+
k
+
1
=
∑
k
=
1
n
1
2
k
+
1
≥
∑
k
=
1
n
1
2
(
k
+
1
)
{\displaystyle {\begin{aligned}s_{n}&=\sum \limits _{k=1}^{n}\left({\sqrt {k+1}}-{\sqrt {k}}\right)\\&=\sum \limits _{k=1}^{n}{\frac {\left({\sqrt {k+1}}-{\sqrt {k}}\right)\left({\sqrt {k+1}}+{\sqrt {k}}\right)}{{\sqrt {k+1}}+{\sqrt {k}}}}\\&=\sum \limits _{k=1}^{n}{\frac {k+1-k}{{\sqrt {k+1}}+{\sqrt {k}}}}\\&=\sum \limits _{k=1}^{n}{\frac {1}{{\sqrt {k+1}}+{\sqrt {k}}}}\\&\geq \sum \limits _{k=1}^{n}{\frac {1}{{\sqrt {k+1}}+{\sqrt {k+1}}}}\\&=\sum \limits _{k=1}^{n}{\frac {1}{2{\sqrt {k+1}}}}\\&\geq \sum \limits _{k=1}^{n}{\frac {1}{2(k+1)}}\end{aligned}}}
As
∑
k
=
1
∞
1
2
(
k
+
1
)
=
∞
{\displaystyle \sum \limits _{k=1}^{\infty }{\frac {1}{2(k+1)}}=\infty }
(harmonic series),
(
s
n
)
{\displaystyle (s_{n})}
is not bounded from above/below. Hence, the series diverges.
Subtask 2: We have
2
k
+
1
k
2
(
k
+
1
)
2
=
k
2
+
2
k
+
1
−
k
2
k
2
(
k
+
1
)
2
=
(
k
+
1
)
2
−
k
2
k
2
(
k
+
1
)
2
=
(
k
+
1
)
2
k
2
(
k
+
1
)
2
−
k
2
k
2
(
k
+
1
)
2
=
1
k
2
−
1
(
k
+
1
)
2
{\displaystyle {\begin{aligned}{\frac {2k+1}{k^{2}(k+1)^{2}}}&={\frac {k^{2}+2k+1-k^{2}}{k^{2}(k+1)^{2}}}\\[0.5em]&={\frac {(k+1)^{2}-k^{2}}{k^{2}(k+1)^{2}}}\\[0.5em]&={\frac {(k+1)^{2}}{k^{2}(k+1)^{2}}}-{\frac {k^{2}}{k^{2}(k+1)^{2}}}\\[0.5em]&={\frac {1}{k^{2}}}-{\frac {1}{(k+1)^{2}}}\end{aligned}}}
Obviously, this is a telescoping series with
a
k
=
1
k
2
{\displaystyle a_{k}={\tfrac {1}{k^{2}}}}
. We get:
∑
k
=
1
∞
2
k
+
1
k
2
(
k
+
1
)
2
=
Telescoping
sum
∑
k
=
1
∞
(
1
k
2
−
1
(
k
+
1
)
2
)
=
lim
n
→
∞
(
1
1
2
−
1
(
n
+
1
)
2
)
=
1
{\displaystyle \sum _{k=1}^{\infty }{\frac {2k+1}{k^{2}(k+1)^{2}}}{\underset {\text{sum}}{\overset {\text{Telescoping}}{=}}}\sum _{k=1}^{\infty }\left({\frac {1}{k^{2}}}-{\frac {1}{(k+1)^{2}}}\right)=\lim _{n\to \infty }\left({\frac {1}{1^{2}}}-{\frac {1}{(n+1)^{2}}}\right)=1}
Subtask 3: Take a look at the hint. We get
1
k
(
k
+
2
)
=
1
2
⋅
2
k
(
k
+
2
)
=
1
2
⋅
(
k
+
2
−
k
)
k
(
k
+
2
)
=
1
2
(
k
+
2
)
k
(
k
+
2
)
−
1
2
k
k
(
k
+
2
)
=
1
2
k
−
1
2
k
+
2
{\displaystyle {\begin{aligned}{\frac {1}{k(k+2)}}&={\frac {{\frac {1}{2}}\cdot 2}{k(k+2)}}\\[0.5em]&={\frac {{\frac {1}{2}}\cdot (k+2-k)}{k(k+2)}}\\[0.5em]&={\frac {{\frac {1}{2}}(k+2)}{k(k+2)}}-{\frac {{\frac {1}{2}}k}{k(k+2)}}\\[0.5em]&={\frac {\frac {1}{2}}{k}}-{\frac {\frac {1}{2}}{k+2}}\end{aligned}}}
This is a more generalized version of a telescoping sum. The first and last two summands do not cancel:
∑
k
=
1
∞
1
k
(
k
+
2
)
=
lim
n
→
∞
∑
k
=
1
n
1
k
(
k
+
2
)
=
lim
n
→
∞
∑
k
=
1
n
(
1
2
k
−
1
2
k
+
2
)
=
lim
n
→
∞
1
2
∑
k
=
1
n
(
1
k
−
1
k
+
2
)
=
lim
n
→
∞
1
2
[
(
1
1
−
1
3
)
+
(
1
2
−
1
4
)
+
(
1
3
−
1
5
)
+
…
+
(
1
n
−
2
−
1
n
)
+
(
1
n
−
1
−
1
n
+
1
)
+
(
1
n
−
1
n
+
2
)
]
=
Telescoping
sum
lim
n
→
∞
1
2
[
1
1
+
1
2
−
1
n
+
1
−
1
n
+
2
]
=
1
2
⋅
[
1
+
1
2
]
=
1
2
⋅
3
2
=
3
4
{\displaystyle {\begin{aligned}\sum _{k=1}^{\infty }{\frac {1}{k(k+2)}}&=\lim \limits _{n\to \infty }\sum _{k=1}^{n}{\frac {1}{k(k+2)}}\\[0.5em]&=\lim \limits _{n\to \infty }\sum _{k=1}^{n}\left({\frac {\frac {1}{2}}{k}}-{\frac {\frac {1}{2}}{k+2}}\right)\\[0.5em]&=\lim \limits _{n\to \infty }{\frac {1}{2}}\sum _{k=1}^{n}\left({\frac {1}{k}}-{\frac {1}{k+2}}\right)\\[0.5em]&=\lim \limits _{n\to \infty }{\frac {1}{2}}\left[\left({\frac {1}{1}}-{\frac {1}{3}}\right)+\left({\frac {1}{2}}-{\frac {1}{4}}\right)+\left({\frac {1}{3}}-{\frac {1}{5}}\right)+\ldots +\left({\frac {1}{n-2}}-{\frac {1}{n}}\right)+\left({\frac {1}{n-1}}-{\frac {1}{n+1}}\right)+\left({\frac {1}{n}}-{\frac {1}{n+2}}\right)\right]\\&{\underset {\text{sum}}{\overset {\text{Telescoping}}{=}}}\lim \limits _{n\to \infty }{\frac {1}{2}}\left[{\frac {1}{1}}+{\frac {1}{2}}-{\frac {1}{n+1}}-{\frac {1}{n+2}}\right]\\[0.5em]&={\frac {1}{2}}\cdot \left[1+{\frac {1}{2}}\right]\\[0.5em]&={\frac {1}{2}}\cdot {\frac {3}{2}}\\[0.5em]&={\frac {3}{4}}\end{aligned}}}
Subtask 4: We have
1
4
k
2
+
4
k
−
3
=
1
(
2
k
−
1
)
(
2
k
+
3
)
=
1
4
⋅
4
(
2
k
−
1
)
(
2
k
+
3
)
=
1
4
⋅
(
2
k
+
4
−
2
k
)
(
2
k
−
1
)
(
2
k
+
3
)
=
1
4
⋅
(
2
k
+
3
−
2
k
+
1
)
(
2
k
−
1
)
(
2
k
+
3
)
=
1
4
⋅
(
2
k
+
3
(
2
k
−
1
)
(
2
k
+
3
)
−
2
k
−
1
(
2
k
−
1
)
(
2
k
+
3
)
)
=
1
4
⋅
(
1
2
k
−
1
−
1
2
k
+
3
)
{\displaystyle {\begin{aligned}{\frac {1}{4k^{2}+4k-3}}&={\frac {1}{(2k-1)(2k+3)}}\\[0.5em]&={\frac {{\frac {1}{4}}\cdot 4}{(2k-1)(2k+3)}}\\[0.5em]&={\frac {{\frac {1}{4}}\cdot (2k+4-2k)}{(2k-1)(2k+3)}}\\[0.5em]&={\frac {{\frac {1}{4}}\cdot (2k+3-2k+1)}{(2k-1)(2k+3)}}\\[0.5em]&={\frac {1}{4}}\cdot \left({\frac {2k+3}{(2k-1)(2k+3)}}-{\frac {2k-1}{(2k-1)(2k+3)}}\right)\\[0.5em]&={\frac {1}{4}}\cdot \left({\frac {1}{2k-1}}-{\frac {1}{2k+3}}\right)\end{aligned}}}
We get the following telescoping series:
∑
k
=
1
∞
1
4
k
2
+
4
k
−
3
=
lim
n
→
∞
∑
k
=
1
n
1
4
k
2
+
4
k
−
3
=
lim
n
→
∞
∑
k
=
1
n
1
4
⋅
(
1
2
k
−
1
−
1
2
k
+
3
)
=
lim
n
→
∞
1
4
⋅
∑
k
=
1
n
(
1
2
k
−
1
−
1
2
k
+
3
)
=
lim
n
→
∞
1
4
[
(
1
1
−
1
5
)
+
(
1
3
−
1
7
)
+
(
1
5
−
1
9
)
+
…
+
(
1
2
n
−
5
−
1
2
n
−
1
)
+
(
1
2
n
−
3
−
1
2
n
+
1
)
+
(
1
2
n
−
1
−
1
2
n
+
3
)
]
=
Telescoping
sum
lim
n
→
∞
1
4
[
1
1
+
1
3
−
1
2
n
+
1
−
1
2
n
+
3
]
=
1
4
⋅
[
1
+
1
3
]
=
1
4
⋅
4
3
=
1
3
{\displaystyle {\begin{aligned}\sum _{k=1}^{\infty }{\frac {1}{4k^{2}+4k-3}}&=\lim \limits _{n\to \infty }\sum _{k=1}^{n}{\frac {1}{4k^{2}+4k-3}}\\[0.5em]&=\lim \limits _{n\to \infty }\sum _{k=1}^{n}{\frac {1}{4}}\cdot \left({\frac {1}{2k-1}}-{\frac {1}{2k+3}}\right)\\[0.5em]&=\lim \limits _{n\to \infty }{\frac {1}{4}}\cdot \sum _{k=1}^{n}\left({\frac {1}{2k-1}}-{\frac {1}{2k+3}}\right)\\[0.5em]&=\lim \limits _{n\to \infty }{\frac {1}{4}}\left[\left({\frac {1}{1}}-{\frac {1}{5}}\right)+\left({\frac {1}{3}}-{\frac {1}{7}}\right)+\left({\frac {1}{5}}-{\frac {1}{9}}\right)+\ldots +\left({\frac {1}{2n-5}}-{\frac {1}{2n-1}}\right)+\left({\frac {1}{2n-3}}-{\frac {1}{2n+1}}\right)+\left({\frac {1}{2n-1}}-{\frac {1}{2n+3}}\right)\right]\\&{\underset {\text{sum}}{\overset {\text{Telescoping}}{=}}}\lim \limits _{n\to \infty }{\frac {1}{4}}\left[{\frac {1}{1}}+{\frac {1}{3}}-{\frac {1}{2n+1}}-{\frac {1}{2n+3}}\right]\\[0.5em]&={\frac {1}{4}}\cdot \left[1+{\frac {1}{3}}\right]\\[0.5em]&={\frac {1}{4}}\cdot {\frac {4}{3}}\\[0.5em]&={\frac {1}{3}}\end{aligned}}}
Subtask 5: Take a look at the hint! We get
1
k
(
k
+
1
)
(
k
+
2
)
=
1
2
k
−
1
k
+
1
+
1
2
k
+
2
=
1
2
k
−
1
2
k
+
1
−
1
2
k
+
1
+
1
2
k
+
2
=
1
2
k
−
1
2
k
+
1
−
(
1
2
k
+
1
−
1
2
k
+
2
)
{\displaystyle {\begin{aligned}{\frac {1}{k(k+1)(k+2)}}&={\frac {\frac {1}{2}}{k}}-{\frac {1}{k+1}}+{\frac {\frac {1}{2}}{k+2}}\\[0.5em]&={\frac {\frac {1}{2}}{k}}-{\frac {\frac {1}{2}}{k+1}}-{\frac {\frac {1}{2}}{k+1}}+{\frac {\frac {1}{2}}{k+2}}\\[0.5em]&={\frac {\frac {1}{2}}{k}}-{\frac {\frac {1}{2}}{k+1}}-({\frac {\frac {1}{2}}{k+1}}-{\frac {\frac {1}{2}}{k+2}})\\[0.5em]\end{aligned}}}
Hence, we can calculate the series using two telescoping series:
∑
k
=
1
∞
1
k
(
k
+
1
)
(
k
+
2
)
=
lim
n
→
∞
∑
k
=
1
n
1
k
(
k
+
1
)
(
k
+
2
)
=
lim
n
→
∞
∑
k
=
1
n
(
1
2
k
−
1
2
k
+
1
−
(
1
2
k
+
1
−
1
2
k
+
2
)
)
=
lim
n
→
∞
1
2
∑
k
=
1
n
(
1
k
−
1
k
+
1
)
−
1
2
∑
k
=
1
n
(
1
k
+
1
−
1
k
+
2
)
=
Telescoping
sum
lim
n
→
∞
1
2
[
(
1
1
−
1
n
+
1
)
−
(
1
2
−
1
n
+
2
)
]
=
lim
n
→
∞
1
2
[
1
2
−
1
n
+
1
+
1
n
+
2
]
=
1
2
⋅
[
1
2
−
0
+
0
]
=
1
2
⋅
1
2
=
1
4
{\displaystyle {\begin{aligned}\sum _{k=1}^{\infty }{\frac {1}{k(k+1)(k+2)}}&=\lim \limits _{n\to \infty }\sum _{k=1}^{n}{\frac {1}{k(k+1)(k+2)}}\\[0.5em]&=\lim \limits _{n\to \infty }\sum _{k=1}^{n}\left({\frac {\frac {1}{2}}{k}}-{\frac {\frac {1}{2}}{k+1}}-({\frac {\frac {1}{2}}{k+1}}-{\frac {\frac {1}{2}}{k+2}})\right)\\[0.5em]&=\lim \limits _{n\to \infty }{\frac {1}{2}}\sum _{k=1}^{n}\left({\frac {1}{k}}-{\frac {1}{k+1}}\right)-{\frac {1}{2}}\sum _{k=1}^{n}\left({\frac {1}{k+1}}-{\frac {1}{k+2}}\right)\\[0.5em]&{\underset {\text{sum}}{\overset {\text{Telescoping}}{=}}}\lim \limits _{n\to \infty }{\frac {1}{2}}\left[\left({\frac {1}{1}}-{\frac {1}{n+1}}\right)-\left({\frac {1}{2}}-{\frac {1}{n+2}}\right)\right]\\[0.5em]&=\lim \limits _{n\to \infty }{\frac {1}{2}}\left[{\frac {1}{2}}-{\frac {1}{n+1}}+{\frac {1}{n+2}}\right]\\[0.5em]&={\frac {1}{2}}\cdot \left[{\frac {1}{2}}-0+0\right]\\[0.5em]&={\frac {1}{2}}\cdot {\frac {1}{2}}\\[0.5em]&={\frac {1}{4}}\end{aligned}}}
Alternative solution: It holds that
1
k
(
k
+
1
)
(
k
+
2
)
=
1
2
⋅
2
k
(
k
+
1
)
(
k
+
2
)
=
1
2
⋅
(
k
+
2
−
k
)
k
(
k
+
1
)
(
k
+
2
)
=
1
2
(
k
+
2
)
k
(
k
+
1
)
(
k
+
2
)
−
1
2
k
k
(
k
+
1
)
(
k
+
2
)
=
1
2
k
(
k
+
1
)
−
1
2
(
k
+
1
)
(
k
+
2
)
{\displaystyle {\begin{aligned}{\frac {1}{k(k+1)(k+2)}}&={\frac {{\frac {1}{2}}\cdot 2}{k(k+1)(k+2)}}\\[0.5em]&={\frac {{\frac {1}{2}}\cdot (k+2-k)}{k(k+1)(k+2)}}\\[0.5em]&={\frac {{\frac {1}{2}}(k+2)}{k(k+1)(k+2)}}-{\frac {{\frac {1}{2}}k}{k(k+1)(k+2)}}\\[0.5em]&={\frac {\frac {1}{2}}{k(k+1)}}-{\frac {\frac {1}{2}}{(k+1)(k+2)}}\\[0.5em]\end{aligned}}}
Using the properties of telescoping series, we get:
∑
k
=
1
∞
1
k
(
k
+
1
)
(
k
+
2
)
=
lim
n
→
∞
∑
k
=
1
n
1
k
(
k
+
1
)
(
k
+
2
)
=
lim
n
→
∞
∑
k
=
1
n
(
1
2
k
(
k
+
1
)
−
1
2
(
k
+
1
)
(
k
+
2
)
)
=
lim
n
→
∞
1
2
∑
k
=
1
n
(
1
k
(
k
+
1
)
−
1
(
k
+
1
)
(
k
+
2
)
)
=
Telescoping
sum
lim
n
→
∞
1
2
[
1
1
⋅
2
−
1
(
n
+
1
)
(
n
+
2
)
]
=
1
2
⋅
[
1
2
−
0
]
=
1
2
⋅
1
2
=
1
4
{\displaystyle {\begin{aligned}\sum _{k=1}^{\infty }{\frac {1}{k(k+1)(k+2)}}&=\lim \limits _{n\to \infty }\sum _{k=1}^{n}{\frac {1}{k(k+1)(k+2)}}\\[0.5em]&=\lim \limits _{n\to \infty }\sum _{k=1}^{n}\left({\frac {\frac {1}{2}}{k(k+1)}}-{\frac {\frac {1}{2}}{(k+1)(k+2)}}\right)\\[0.5em]&=\lim \limits _{n\to \infty }{\frac {1}{2}}\sum _{k=1}^{n}\left({\frac {1}{k(k+1)}}-{\frac {1}{(k+1)(k+2)}}\right)\\[0.5em]&{\underset {\text{sum}}{\overset {\text{Telescoping}}{=}}}\lim \limits _{n\to \infty }{\frac {1}{2}}\left[{\frac {1}{1\cdot 2}}-{\frac {1}{(n+1)(n+2)}}\right]\\[0.5em]&={\frac {1}{2}}\cdot \left[{\frac {1}{2}}-0\right]\\[0.5em]&={\frac {1}{2}}\cdot {\frac {1}{2}}\\[0.5em]&={\frac {1}{4}}\end{aligned}}}
Solution 6: It holds that
k
−
1
k
(
k
+
1
)
(
k
+
2
)
=
k
k
(
k
+
1
)
(
k
+
2
)
−
1
k
(
k
+
1
)
(
k
+
2
)
=
1
(
k
+
1
)
(
k
+
2
)
−
1
k
(
k
+
1
)
(
k
+
2
)
{\displaystyle {\frac {k-1}{k(k+1)(k+2)}}={\frac {k}{k(k+1)(k+2)}}-{\frac {1}{k(k+1)(k+2)}}={\frac {1}{(k+1)(k+2)}}-{\frac {1}{k(k+1)(k+2)}}}
It follows that
∑
k
=
1
∞
k
−
1
k
(
k
+
1
)
(
k
+
2
)
=
lim
n
→
∞
∑
k
=
1
n
k
−
1
k
(
k
+
1
)
(
k
+
2
)
=
lim
n
→
∞
∑
k
=
1
n
(
1
(
k
+
1
)
(
k
+
2
)
−
1
k
(
k
+
1
)
(
k
+
2
)
)
=
Index
shift
lim
n
→
∞
[
∑
k
=
2
n
−
1
1
k
(
k
+
1
)
−
∑
k
=
1
n
1
k
(
k
+
1
)
(
k
+
2
)
]
=
lim
n
→
∞
[
∑
k
=
1
n
−
1
1
k
(
k
+
1
)
−
1
1
⋅
2
−
∑
k
=
1
n
1
k
(
k
+
1
)
(
k
+
2
)
]
=
Computation rules
for limits
lim
n
→
∞
∑
k
=
1
n
−
1
1
k
(
k
+
1
)
−
1
1
⋅
2
−
lim
n
→
∞
∑
k
=
1
n
1
k
(
k
+
1
)
(
k
+
2
)
=
∑
k
=
1
∞
1
k
(
k
+
1
)
⏟
=
1
−
1
2
−
∑
k
=
1
∞
1
k
(
k
+
1
)
(
k
+
2
)
⏟
=
1
4
see
4.
=
1
−
1
2
−
1
4
=
1
4
{\displaystyle {\begin{aligned}\sum _{k=1}^{\infty }{\frac {k-1}{k(k+1)(k+2)}}&=\lim \limits _{n\to \infty }\sum _{k=1}^{n}{\frac {k-1}{k(k+1)(k+2)}}\\[0.5em]&=\lim \limits _{n\to \infty }\sum _{k=1}^{n}\left({\frac {1}{(k+1)(k+2)}}-{\frac {1}{k(k+1)(k+2)}}\right)\\[0.5em]&{\underset {\text{shift}}{\overset {\text{Index}}{=}}}\lim \limits _{n\to \infty }\left[\sum _{k=2}^{n-1}{\frac {1}{k(k+1)}}-\sum _{k=1}^{n}{\frac {1}{k(k+1)(k+2)}}\right]\\[0.5em]&=\lim \limits _{n\to \infty }\left[\sum _{k=1}^{n-1}{\frac {1}{k(k+1)}}-{\frac {1}{1\cdot 2}}-\sum _{k=1}^{n}{\frac {1}{k(k+1)(k+2)}}\right]\\[0.5em]&{\underset {\text{for limits}}{\overset {\text{Computation rules}}{=}}}\lim \limits _{n\to \infty }\sum _{k=1}^{n-1}{\frac {1}{k(k+1)}}-{\frac {1}{1\cdot 2}}-\lim \limits _{n\to \infty }\sum _{k=1}^{n}{\frac {1}{k(k+1)(k+2)}}\\[0.5em]&=\underbrace {\sum _{k=1}^{\infty }{\frac {1}{k(k+1)}}} _{=1}-{\frac {1}{2}}-\underbrace {\sum _{k=1}^{\infty }{\frac {1}{k(k+1)(k+2)}}} _{={\frac {1}{4}}{\text{ see }}4.}\\[0.5em]&=1-{\frac {1}{2}}-{\frac {1}{4}}\\[0.5em]&={\frac {1}{4}}\end{aligned}}}