A) p + c L ⋅ m ⋅ v 2 2 ⋅ k B ⋅ T − t − s w − z = 2 , 2 {\displaystyle {\sqrt {p}}+c_{L}\cdot {\frac {m\cdot v^{2}}{2\cdot k_{B}\cdot T}}-{\frac {t-s}{w-z}}=2,2} Formen Sie diese Formel auf z, m, v, T, p, t, s, kB, cL um! B) a + b ⋅ c ⋅ m − ( n − 3 ) 2 + b ⋅ d − w − f k = m {\displaystyle a+b\cdot c\cdot m-(n-3)^{2}+b\cdot {\sqrt {d-w}}-{\frac {f}{k}}=m} Formen Sie diese Formel auf a, b, c, f, m, n, k, w um!
p + c L ⋅ m ⋅ v 2 2 ⋅ k B ⋅ T − t − s w − z = 2 , 2 {\displaystyle {\sqrt {p}}+c_{L}\cdot {\frac {m\cdot v^{2}}{2\cdot k_{B}\cdot T}}-{\frac {t-s}{w-z}}=2,2} t − s w − z = p + c L ⋅ m ⋅ v 2 2 ⋅ k B ⋅ T − 2 , 2 {\displaystyle {\frac {t-s}{w-z}}={\sqrt {p}}+c_{L}\cdot {\frac {m\cdot v^{2}}{2\cdot k_{B}\cdot T}}-2,2} w − z = t − s p + c L ⋅ m ⋅ v 2 2 ⋅ k B ⋅ T − 2 , 2 {\displaystyle {w-z}={\dfrac {t-s}{{\sqrt {p}}+c_{L}\cdot {\frac {m\cdot v^{2}}{2\cdot k_{B}\cdot T}}-2,2}}} z = w − ( t − s ) ⋅ 2 ⋅ k B ⋅ T p ⋅ 2 ⋅ k B ⋅ T + c L ⋅ m ⋅ v 2 − 4 , 4 ⋅ k B ⋅ T {\displaystyle z=w-{\frac {(t-s)\cdot {2\cdot k_{B}\cdot T}}{{\sqrt {p}}\cdot {2\cdot k_{B}\cdot T}+c_{L}\cdot {m\cdot v^{2}}-4{,}4\cdot {k_{B}\cdot T}}}} Hoch zum Anfang
p + c L ⋅ m ⋅ v 2 2 ⋅ k B ⋅ T − t − s w − z = 2 , 2 {\displaystyle {\sqrt {p}}+c_{L}\cdot {\frac {m\cdot v^{2}}{2\cdot k_{B}\cdot T}}-{\frac {t-s}{w-z}}=2,2} m ⋅ c L ⋅ v 2 2 ⋅ k B ⋅ T = 2 , 2 − p + t − s w − z {\displaystyle m\cdot {\frac {c_{L}\cdot v^{2}}{2\cdot k_{B}\cdot T}}=2,2-{\sqrt {p}}+{\frac {t-s}{w-z}}} m = ( 2 , 2 − p + t − s w − z ) ⋅ 2 ⋅ k B ⋅ T c L ⋅ v 2 {\displaystyle m=\left(2,2-{\sqrt {p}}+{\frac {t-s}{w-z}}\right)\cdot {\frac {2\cdot k_{B}\cdot T}{c_{L}\cdot v^{2}}}} Hoch zum Anfang
p + c L ⋅ m ⋅ v 2 2 ⋅ k B ⋅ T − t − s w − z = 2 , 2 {\displaystyle {\sqrt {p}}+c_{L}\cdot {\frac {m\cdot v^{2}}{2\cdot k_{B}\cdot T}}-{\frac {t-s}{w-z}}=2,2} v 2 ⋅ c L ⋅ m 2 ⋅ k B ⋅ T = 2 , 2 − p + t − s w − z {\displaystyle v^{2}\cdot {\frac {c_{L}\cdot m}{2\cdot k_{B}\cdot T}}=2,2-{\sqrt {p}}+{\frac {t-s}{w-z}}} v 2 = ( 2 , 2 − p + t − s w − z ) ⋅ 2 ⋅ k B ⋅ T c L ⋅ m {\displaystyle v^{2}=\left(2,2-{\sqrt {p}}+{\frac {t-s}{w-z}}\right)\cdot {\frac {2\cdot k_{B}\cdot T}{c_{L}\cdot m}}} v = ( 2 , 2 − p + t − s w − z ) ⋅ 2 ⋅ k B ⋅ T c L ⋅ m {\displaystyle v={\sqrt {\left(2,2-{\sqrt {p}}+{\frac {t-s}{w-z}}\right)\cdot {\frac {2\cdot k_{B}\cdot T}{c_{L}\cdot m}}\ \ }}} Hoch zum Anfang
p + c L ⋅ m ⋅ v 2 2 ⋅ k B ⋅ T − t − s w − z = 2 , 2 {\displaystyle {\sqrt {p}}+c_{L}\cdot {\frac {m\cdot v^{2}}{2\cdot k_{B}\cdot T}}-{\frac {t-s}{w-z}}=2,2} v 2 ⋅ c L ⋅ m 2 ⋅ k B ⋅ 1 T = 2 , 2 − p + t − s w − z {\displaystyle {\frac {v^{2}\cdot c_{L}\cdot m}{2\cdot k_{B}}}\cdot {\frac {1}{T}}=2,2-{\sqrt {p}}+{\frac {t-s}{w-z}}} 1 T = ( 2 , 2 − p + t − s w − z ) ⋅ v 2 ⋅ c L ⋅ m 2 ⋅ k B {\displaystyle {\frac {1}{T}}=\left(2,2-{\sqrt {p}}+{\frac {t-s}{w-z}}\right)\cdot {\frac {v^{2}\cdot c_{L}\cdot m}{2\cdot k_{B}}}} T = 1 ( 2 , 2 − p + t − s w − z ) ⋅ 2 ⋅ k B v 2 ⋅ c L ⋅ m {\displaystyle {T}={\frac {1}{\left(2,2-{\sqrt {p}}+{\frac {t-s}{w-z}}\right)}}\cdot {\frac {2\cdot k_{B}}{v^{2}\cdot c_{L}\cdot m}}} T = w − z ( 2 , 2 ⋅ ( w − z ) − p ⋅ ( w − z ) + t − s ) ⋅ 2 ⋅ k B v 2 ⋅ c L ⋅ m {\displaystyle {T}={\frac {w-z}{\left(2,2\cdot (w-z)-{\sqrt {p}}\cdot (w-z)+{t-s}\right)}}\cdot {\frac {2\cdot k_{B}}{v^{2}\cdot c_{L}\cdot m}}} Hoch zum Anfang
p + c L ⋅ m ⋅ v 2 2 ⋅ k B ⋅ T − t − s w − z = 2 , 2 {\displaystyle {\sqrt {p}}+c_{L}\cdot {\frac {m\cdot v^{2}}{2\cdot k_{B}\cdot T}}-{\frac {t-s}{w-z}}=2,2} p = 2 , 2 − c L ⋅ m ⋅ v 2 2 ⋅ k B ⋅ T + t − s w − z {\displaystyle {\sqrt {p}}=2,2-c_{L}\cdot {\frac {m\cdot v^{2}}{2\cdot k_{B}\cdot T}}+{\frac {t-s}{w-z}}} p = ( 2 , 2 − c L ⋅ m ⋅ v 2 2 ⋅ k B ⋅ T + t − s w − z ) 2 {\displaystyle p=\left(2,2-c_{L}\cdot {\frac {m\cdot v^{2}}{2\cdot k_{B}\cdot T}}+{\frac {t-s}{w-z}}\ \right)^{2}} Hoch zum Anfang
p + c L ⋅ m ⋅ v 2 2 ⋅ k B ⋅ T − t − s w − z = 2 , 2 {\displaystyle {\sqrt {p}}+c_{L}\cdot {\frac {m\cdot v^{2}}{2\cdot k_{B}\cdot T}}-{\frac {t-s}{w-z}}=2,2} t − s w − z = p + c L ⋅ m ⋅ v 2 2 ⋅ k B ⋅ T − 2 , 2 {\displaystyle {\frac {t-s}{w-z}}={\sqrt {p}}+c_{L}\cdot {\frac {m\cdot v^{2}}{2\cdot k_{B}\cdot T}}-2,2} t − s = ( p + c L ⋅ m ⋅ v 2 2 ⋅ k B ⋅ T − 2 , 2 ) ⋅ w − z {\displaystyle {t-s}=\left({\sqrt {p}}+c_{L}\cdot {\frac {m\cdot v^{2}}{2\cdot k_{B}\cdot T}}-2,2\right)\cdot {w-z}} t = ( p + c L ⋅ m ⋅ v 2 2 ⋅ k B ⋅ T − 2 , 2 ) ⋅ w − z + s {\displaystyle {t}=\left({\sqrt {p}}+c_{L}\cdot {\frac {m\cdot v^{2}}{2\cdot k_{B}\cdot T}}-2,2\right)\cdot {w-z}+s} Hoch zum Anfang
p + c L ⋅ m ⋅ v 2 2 ⋅ k B ⋅ T − t − s w − z = 2 , 2 {\displaystyle {\sqrt {p}}+c_{L}\cdot {\frac {m\cdot v^{2}}{2\cdot k_{B}\cdot T}}-{\frac {t-s}{w-z}}=2,2} t − s w − z = p + c L ⋅ m ⋅ v 2 2 ⋅ k B ⋅ T − 2 , 2 {\displaystyle {\frac {t-s}{w-z}}={\sqrt {p}}+c_{L}\cdot {\frac {m\cdot v^{2}}{2\cdot k_{B}\cdot T}}-2,2} t − s = ( p + c L ⋅ m ⋅ v 2 2 ⋅ k B ⋅ T − 2 , 2 ) ⋅ w − z {\displaystyle {t-s}=\left({\sqrt {p}}+c_{L}\cdot {\frac {m\cdot v^{2}}{2\cdot k_{B}\cdot T}}-2,2\right)\cdot {w-z}} s = t − ( p + c L ⋅ m ⋅ v 2 2 ⋅ k B ⋅ T − 2 , 2 ) ⋅ w − z {\displaystyle {s}=t-\left({\sqrt {p}}+c_{L}\cdot {\frac {m\cdot v^{2}}{2\cdot k_{B}\cdot T}}-2,2\right)\cdot {w-z}} Hoch zum Anfang
p + c L ⋅ m ⋅ v 2 2 ⋅ k B ⋅ T − t − s w − z = 2 , 2 {\displaystyle {\sqrt {p}}+c_{L}\cdot {\frac {m\cdot v^{2}}{2\cdot k_{B}\cdot T}}-{\frac {t-s}{w-z}}=2,2} v 2 ⋅ c L ⋅ m 2 ⋅ k B ⋅ 1 T = 2 , 2 − p + t − s w − z {\displaystyle {\frac {v^{2}\cdot c_{L}\cdot m}{2\cdot k_{B}}}\cdot {\frac {1}{T}}=2,2-{\sqrt {p}}+{\frac {t-s}{w-z}}} 1 k B = ( 2 , 2 − p + t − s w − z ) ⋅ v 2 ⋅ c L ⋅ m 2 ⋅ T {\displaystyle {\frac {1}{k_{B}}}=\left(2,2-{\sqrt {p}}+{\frac {t-s}{w-z}}\right)\cdot {\frac {v^{2}\cdot c_{L}\cdot m}{2\cdot T}}} k B = 1 ( 2 , 2 − p + t − s w − z ) ⋅ 2 ⋅ T v 2 ⋅ c L ⋅ m {\displaystyle {k_{B}}={\frac {1}{\left(2,2-{\sqrt {p}}+{\frac {t-s}{w-z}}\right)}}\cdot {\frac {2\cdot T}{v^{2}\cdot c_{L}\cdot m}}} k B = w − z ( 2 , 2 ⋅ ( w − z ) − p ⋅ ( w − z ) + t − s ) ⋅ 2 ⋅ T v 2 ⋅ c L ⋅ m {\displaystyle {k_{B}}={\frac {w-z}{\left(2,2\cdot (w-z)-{\sqrt {p}}\cdot (w-z)+{t-s}\right)}}\cdot {\frac {2\cdot T}{v^{2}\cdot c_{L}\cdot m}}} Hoch zum Anfang
p + c L ⋅ m ⋅ v 2 2 ⋅ k B ⋅ T − t − s w − z = 2 , 2 {\displaystyle {\sqrt {p}}+c_{L}\cdot {\frac {m\cdot v^{2}}{2\cdot k_{B}\cdot T}}-{\frac {t-s}{w-z}}=2,2} c L ⋅ m ⋅ v 2 2 ⋅ k B ⋅ T = 2 , 2 − p + t − s w − z {\displaystyle c_{L}\cdot {\frac {m\cdot v^{2}}{2\cdot k_{B}\cdot T}}=2,2-{\sqrt {p}}+{\frac {t-s}{w-z}}} c L = ( 2 , 2 − p + t − s w − z ) ⋅ 2 ⋅ k B ⋅ T m ⋅ v 2 {\displaystyle c_{L}=\left(2,2-{\sqrt {p}}+{\frac {t-s}{w-z}}\right)\cdot {\frac {2\cdot k_{B}\cdot T}{m\cdot v^{2}}}} Hoch zum Anfang
a + b ⋅ c ⋅ m − ( n − 3 ) 2 + b ⋅ d − w − f k = m {\displaystyle a+b\cdot c\cdot m-(n-3)^{2}+b\cdot {\sqrt {d-w}}-{\frac {f}{k}}=m} a = m − b ⋅ c ⋅ m + ( n − 3 ) 2 − b ⋅ d − w + f k {\displaystyle a=m-b\cdot c\cdot m+(n-3)^{2}-b\cdot {\sqrt {d-w}}+{\frac {f}{k}}} Hoch zum Anfang
a + b ⋅ c ⋅ m − ( n − 3 ) 2 + b ⋅ d − w − f k = m {\displaystyle a+b\cdot c\cdot m-(n-3)^{2}+b\cdot {\sqrt {d-w}}-{\frac {f}{k}}=m} b ⋅ c ⋅ m + b ⋅ d − w = m − a + ( n − 3 ) 2 + f k {\displaystyle b\cdot c\cdot m+b\cdot {\sqrt {d-w}}=m-a+(n-3)^{2}+{\frac {f}{k}}} b ⋅ ( c ⋅ m + d − w ) = m − a + ( n − 3 ) 2 + f k {\displaystyle b\cdot \left(c\cdot m+{\sqrt {d-w}}\right)=m-a+(n-3)^{2}+{\frac {f}{k}}} b = m − a + ( n − 3 ) 2 + f k c ⋅ m + d − w {\displaystyle b={\dfrac {m-a+(n-3)^{2}+{\frac {f}{k}}}{c\cdot m+{\sqrt {d-w}}}}} b = ( m − a + ( n − 3 ) 2 ) ⋅ k + f ( c ⋅ m + d − w ) ⋅ k {\displaystyle b={\frac {(m-a+(n-3)^{2})\cdot k+{f}}{(c\cdot m+{\sqrt {d-w}})\cdot k}}} Hoch zum Anfang
a + b ⋅ c ⋅ m − ( n − 3 ) 2 + b ⋅ d − w − f k = m {\displaystyle a+b\cdot c\cdot m-(n-3)^{2}+b\cdot {\sqrt {d-w}}-{\frac {f}{k}}=m} b ⋅ c ⋅ m = m − a + ( n − 3 ) 2 − b ⋅ d − w + f k {\displaystyle b\cdot c\cdot m=m-a+(n-3)^{2}-b\cdot {\sqrt {d-w}}+{\frac {f}{k}}} c = ( m − a + ( n − 3 ) 2 − b ⋅ d − w ) ⋅ k + f b ⋅ m ⋅ k {\displaystyle c={\frac {(m-a+(n-3)^{2}-b\cdot {\sqrt {d-w}})\cdot k+{f}}{b\cdot m\cdot k}}} Hoch zum Anfang
a + b ⋅ c ⋅ m − ( n − 3 ) 2 + b ⋅ d − w − f k = m {\displaystyle a+b\cdot c\cdot m-(n-3)^{2}+b\cdot {\sqrt {d-w}}-{\frac {f}{k}}=m} f k = a + b ⋅ c ⋅ m − ( n − 3 ) 2 + b ⋅ d − w − m {\displaystyle {\frac {f}{k}}=a+b\cdot c\cdot m-(n-3)^{2}+b\cdot {\sqrt {d-w}}-m} f = ( a + b ⋅ c ⋅ m − ( n − 3 ) 2 + b ⋅ d − w − m ) ⋅ k {\displaystyle f=(a+b\cdot c\cdot m-(n-3)^{2}+b\cdot {\sqrt {d-w}}-m)\cdot k} Hoch zum Anfang
a + b ⋅ c ⋅ m − ( n − 3 ) 2 + b ⋅ d − w − f k = m {\displaystyle a+b\cdot c\cdot m-(n-3)^{2}+b\cdot {\sqrt {d-w}}-{\frac {f}{k}}=m} a − ( n − 3 ) 2 + b ⋅ d − w − f k = m − b ⋅ c ⋅ m {\displaystyle a-(n-3)^{2}+b\cdot {\sqrt {d-w}}-{\frac {f}{k}}=m-b\cdot c\cdot m} a − ( n − 3 ) 2 + b ⋅ d − w − f k = m ( 1 − b ⋅ c ) {\displaystyle a-(n-3)^{2}+b\cdot {\sqrt {d-w}}-{\frac {f}{k}}=m(1-b\cdot c)} m = ( a − ( n − 3 ) 2 + b ⋅ d − w ) ⋅ k − f ( 1 − b ⋅ c ) ⋅ k {\displaystyle m={\frac {(a-(n-3)^{2}+b\cdot {\sqrt {d-w}})\cdot k-{f}}{(1-b\cdot c)\cdot k}}} Hoch zum Anfang
a + b ⋅ c ⋅ m − ( n − 3 ) 2 + b ⋅ d − w − f k = m {\displaystyle a+b\cdot c\cdot m-(n-3)^{2}+b\cdot {\sqrt {d-w}}-{\frac {f}{k}}=m} ( n − 3 ) 2 = a + b ⋅ c ⋅ m − m + + b ⋅ d − w + f k {\displaystyle (n-3)^{2}=a+b\cdot c\cdot m-m++b\cdot {\sqrt {d-w}}+{\frac {f}{k}}} n − 3 = a + b ⋅ c ⋅ m − m + + b ⋅ d − w + f k {\displaystyle n-3={\sqrt {a+b\cdot c\cdot m-m++b\cdot {\sqrt {d-w}}+{\frac {f}{k}}\ \ }}} n = a + b ⋅ c ⋅ m − m + + b ⋅ d − w + f k + 3 {\displaystyle n={\sqrt {a+b\cdot c\cdot m-m++b\cdot {\sqrt {d-w}}+{\frac {f}{k}}\ \ }}\ +3} Hoch zum Anfang
a + b ⋅ c ⋅ m − ( n − 3 ) 2 + b ⋅ d − w − f k = m {\displaystyle a+b\cdot c\cdot m-(n-3)^{2}+b\cdot {\sqrt {d-w}}-{\frac {f}{k}}=m} f k = a + b ⋅ c ⋅ m − ( n − 3 ) 2 + b ⋅ d − w − m {\displaystyle {\frac {f}{k}}=a+b\cdot c\cdot m-(n-3)^{2}+b\cdot {\sqrt {d-w}}-m} k = f a + b ⋅ c ⋅ m − ( n − 3 ) 2 + b ⋅ d − w − m {\displaystyle {k}={\frac {f}{a+b\cdot c\cdot m-(n-3)^{2}+b\cdot {\sqrt {d-w}}-m}}} Hoch zum Anfang
a + b ⋅ c ⋅ m − ( n − 3 ) 2 + b ⋅ d − w − f k = m {\displaystyle a+b\cdot c\cdot m-(n-3)^{2}+b\cdot {\sqrt {d-w}}-{\frac {f}{k}}=m} b ⋅ d − w = m − a − b ⋅ c ⋅ m + ( n − 3 ) 2 + f k {\displaystyle b\cdot {\sqrt {d-w}}=m-a-b\cdot c\cdot m+(n-3)^{2}+{\frac {f}{k}}} d − w = m − a − b ⋅ c ⋅ m + ( n − 3 ) 2 + f k b {\displaystyle {\sqrt {d-w}}={\dfrac {m-a-b\cdot c\cdot m+(n-3)^{2}+{\frac {f}{k}}}{b}}} d − w = ( ( m − a − b ⋅ c ⋅ m + ( n − 3 ) 2 ) ⋅ k + f b ⋅ k ) 2 {\displaystyle {d-w}={\left({\frac {\left(m-a-b\cdot c\cdot m+(n-3)^{2}\right)\cdot {k}+{f}}{b\cdot k}}\right)}^{2}} w = d − ( ( m − a − b ⋅ c ⋅ m + ( n − 3 ) 2 ) ⋅ k + f b ⋅ k ) 2 {\displaystyle {w}=d-{\left({\frac {\left(m-a-b\cdot c\cdot m+(n-3)^{2}\right)\cdot {k}+{f}}{b\cdot k}}\right)}^{2}} Hoch zum Anfang