Mathematrix: Aufgabenbeispiele/ Die Steigung und ihre Zusammenhänge
Beweis der Formel der Steigung einer linearen Funktion
Bearbeiten
Zeigen Sie, dass die Steigung s |
Wir benutzen hier 2 Punkte, wie in der entsprechenden Aufgabe mit konkreten Zahlen. Diesmal benutzen wir Symbole statt konkreten Zahlen.
Wir formen beide Gleichungen auf A um:
Da die rechten Seiten der Gleichungen gleich sind (beide A),
sollen auch die linken gleich sein.
Das Symbol bedeutet Differenz. und , daher:
Steigung
Zusammenhang linearer Funktion und direkter Proportionalität
BearbeitenDie direkte Proportionalität ist eine lineare Funktion, deren y-Achsenabschnitt A null ist. Wenn wir für die Steigung der linearen Funktion das Symbol s und für den y-Achsenabschnitt das Symbol A, dann lautet die allgemeine Darstellung:
y= s·x + A
Wenn der y-Achsenabschnitt null ist, dann haben wir eine direkte Proportionalität:
y= s·x
Die Steigung ist in diesem Fall das Verhältnis (Quotient) zwischen abhängiger und unabhängiger Variable:
Es gibt allerdings noch einen Zusammenhang zwischen direkter Proportionalität und linearer Gleichung. Die Steigung ist das Verhältnis zwischen Änderung der unabhängigen und Änderung der abhängigen Variable:
Das bedeutet, dass eine direkte Proportionalität zwischen den beiden Änderungen besteht:
Zusammenhang linearer Funktion und Ähnlichkeit ebener Figuren
BearbeitenZwei Figuren sind ähnlich, wenn die eine eine Vergrößerung der andere ist. Bei Figuren mit Winkeln bedeutet das, dass entsprechende Winkel gleich bleiben, die Verhältnisse (Quotienten) der entsprechenden Seiten zu einander ebenfalls.
Wenn man das große und das kleine Dreieck im Bild hier links vergleicht, dann stellt man fest, dass alle entsprechenden Winkel gleich sind (A mit D, B mit E und C mit F). Dreieck DEF ist eine Vergrößerung des Dreiecks ABC. Nehmen wir an, dass Seite DE 1,5 mal so groß wie Seite AB ist, also DE=1,5·AB. Dann muss das gleiche ebenfalls zwischen BC und EF gelten, also EF=1,5·BC. Für die Verhältnisse (Quotienten) gilt dann:
und
also, die Quotienten der entsprechenden Seiten sind gleich!
Seite DE ist allerdings 1,5 mal die Seite AB, also um 50% größer als AB. Das gilt allerdings genauso für Seiten EF und BC, also EF ist 50% größer als BC. Man stellt daher fest, dass bei der Ähnlichkeit von Figuren eine direkte Proportionalität (eine lineare Funktion mit y-Achsenabschnitt gleich null) für die Längen der Seiten vorliegt: wird eine Seite größer, dann wird die andere auch und zwar um den gleichen Prozentsatz!