Mathematische Übungsbeispiele: Dreiecke und Vierecke

hoch zum Inhaltsverzeichnis

Wenn du nicht weisst, wie du ein Problem lösen kannst, dann gibt es ein leichteres Problem, das du nicht lösen kannst. Finde es!

 George Polya


Flächen von Dreieck und Viereck

Bearbeiten

Rechtecksfläche

Bearbeiten

Berechne die Fläche eines Rechtecks mit den Seiten   und  

Fläche eines rechtwinkligen Dreiecks

Bearbeiten

Berechne die Fläche eines rechtwinkligen Dreiecks mit den Katheten   und  

Fläche eines allgemeinen Dreiecks

Bearbeiten

Berechne die Fläche eines Dreiecks mit   und der Höhe   über der Seite  .

Achtstern

Bearbeiten

 

Zwei gleich große Quadrate mit Seitenlänge 1 liegen in Form eines achtzackigen Sterns übereinander. Die jeweiligen Mittelpunkte liegen übereinander, das zweite Quadrat liegt um 45° verdreht zum ersten. Berechne die Fläche der vier überstehenden Ecken des zweiten Quadrats.

Ich habe an dieser Aufgabe in der fünften Gym einen ganzen Nachmittag herumgerechnet. Mit dem richtigen Ansatz geht es aber in fünf Minuten.

Rechteck geschält

Bearbeiten

Von einem Rechteck mit den Seitenlängen   und   soll ringsherum ein Streifen einheitlicher Dicke weggeschnitten werden, sodass es auf ein kleineres Rechteck mit der Hälfte der Fläche schrumpft. Gib die Dicke der Schale für die Rechtecke   und   an.

Archimedes und Wurzel von x

Bearbeiten

 

  Archimedes überlegt sich, wie er den Umfang eines Kreises mit Radius 1 (und damit die Kreiszahl  ) durch eingeschriebene Vielecke näherungsweise berechnen kann. Zuerst berechnet Archimedes den Umfang eines eingeschriebenen Quadrates  . Geteilt durch 2 hat das auf dem Taschenrechner den Wert  , eine erste Näherung für  . Für die nächste Näherung soll jede Seite in der Mitte geteilt werden und aus dem eingeschriebenen Viereck wird ein eingeschriebenes Achteck. Sein halber Umfang   ist schon eine bessere Näherung für  . Mit der gleichen Berechnungsmethode kannst du auf ein 16-, 32- und 64-Eck verfeinern, prinzipiell immer weiter. Berechne   und überprüfe das Ergebnis auf jeweils 4 Stellen hinter dem Komma.

Würfelverdopplung

Bearbeiten

Das Orakel von Delphi verlangte, dass der würfelförmige Altartisch vergrößert wird, sodass sich sein Volumen verdoppelt. Um welchen Faktor muss die Seitenlänge größer werden?


Trigonometrie

Bearbeiten

Drei Seiten

Bearbeiten

Ein Dreieck hat die Seitenlängen  ,   und  . Berechne den der Seite c gegenüberliegenden Winkel   .

Die Formel, mit der man diese Aufgabe löst, ist eine Verallgemeinerung des Pythagoräischen Lehrsatzes.

Zwei Seiten und der eingeschlossene Winkel

Bearbeiten

Ein Dreieck schließt mit den Seiten   und   den Winkel   ein. Berechne daraus die Länge der Seite   (gegenüberliegend zu  ).

 

Mit dem Spiegel zur Spitze

Bearbeiten

 

Auf einem zehn Meter langen, senkrecht aufgestellten Stab ist eine Perle befestigt  . Fünf Meter vom Fuß des Stabes entfernt ist ein Spiegel drehbar gelagert (Punkt  ), die Drehachse steht normal zum Stab  . Angenommen die Sonne steht im Zenith (ihre Strahlen fallen senkrecht ein), um welchen Winkel   (zum Boden) muss der Spiegel mit Länge   gekippt werden, damit der Sonnenstrahl, der von der Spiegelmitte reflektiert wird, die Perle trifft?