Mathematik für Wirtschaftswissenschaftler: Logarithmen

Beschreibung des Logarithmus

Bearbeiten

Man geht aus von

 

a>0, x>0, a ≠ 1, y ∈ ℝ. Löst man die Gleichung nach y auf ergibt sich


 .


Man sagt: y ist der Logarithmus von x zur Basis a. Beide Gleichungen sind äquivalent:


     


Beispiele:

 , also  , denn  .
 , also  , denn  .
 , also  , denn  .

Spezielle Logarithmen

Bearbeiten

Der Logarithmus zur Basis 10 ist der dekadische Logarithmus. Er wird einfach "lg x" geschrieben. Er ist besonders einfach zu handhaben:

 ,     ,     .

Der Logarithmus zur Basis 2 wird auch dualer Logarithmus genannt. Man verwendet ihn vor allem in der Informatik, etwa zur Ermittlung der Zahl von Leitungen, die man für die Programmierung von Mikrochips braucht. Man schreibt ihn "ld x".

Häufig verwendet wird auch der Logarithmus zur Basis e, der natürliche Logarithmus. Aufgrund seiner einfachen Ableitung wird er gerne in der Analysis verwendet. Dieser Logarithmus wird in der Regel "ln x" geschrieben.

Verwendung finden Logarithmen beispielsweise zur Auflösung komplizierter Gleichungen oder für die Umformung sehr unterschiedlich großer Werte.

Rechenregeln für Logarithmen

Bearbeiten

bei beliebiger Basis a.

1.  .  
2.  .
3.  .
4.  .
5.  , zB.      .
6.   und  .
Speziell:   und        und  .

Übungen zu Logarithmen

Bearbeiten

Aufgabe 1

Berechnen Sie ohne Taschenrechner

  1.  
  2.  
  3.  
  4.