Mathematikunterricht/ Sek/ Stochastik/ Bedingte Wahrscheinlichkeit

Wann spricht man von einer bedingten Wahrscheinlichkeit?Bearbeiten

Bei mehrmaligem Würfeln hängt die Wahrscheinlichkeit eine bestimmte Zahl zwischen 1 und 6 zu werfen nicht von dem vorherigen Ergebnis ab. Jeder Wurf geschieht unabhängig von dem vorigen. Werden hingegen aus einer Urne, die z.B. mehrere Kugeln mit zwei unterschiedlichen Farben enthält, nacheinander Kugeln gezogen, ohne sie wieder zurückzulegen, dann ist die Wahrscheinlichkeit für ein bestimmtes Ergebnis oft von dem vorigen Ergebnis abhängig. In diesem Fall spricht man von einer bedingten Wahrscheinlichkeit.

EinführungsbeispielBearbeiten

Eine Urne enthält 100 Kugeln.
70 Kugeln bestehen aus dem Material Holz und 30 Kugeln sind aus Kunststoff.
25 der Holzkugeln sind mit der Farbe rot gestrichen und 45 sind grün.
10 der Kunststoffkugeln sind rot und 20 sind grün.
Folgende Ereignisse werden definiert:
 : Die Kugel ist aus Holz.        : Die Kugel ist aus Kunststoff.
 : Die Kugel ist rot.                : Die Kugel ist grün.
Die Kugeln tragen zwei Merkmale mit jeweils zwei Ausprägungen.
 
Dieser Sachverhalt kann in einer Vierfeldtafel dargestellt werden:
 
Aus der Urne wird eine Kugel zufällig gezogen.
Mit den Daten der Tafel lassen sich direkt folgende Wahrscheinlichkeiten berechnen:
   
   
   
   
Die zugehörige Vierfeld – Tafel:

 

 

 

Summe

 

 

 

 

 

 

 

 

Summe

 

 

 

Jemand zieht eine Kugel und spürt mit der Hand, dass es sich um eine Kunststoffkugel handelt.
Wie groß ist nun die Wahrscheinlichkeit dafür, dass die Kugel in seiner Hand grün ist?
Das ist nicht die Wahrscheinlichkeit, mit der man eine grüne Kunststoffkugel zieht.
Aus der Vierfeld – Tafel lässt sich die gesuchte Wahrscheinlichkeit nicht ablesen.
Mit einem Ereignisbaum soll diese Frage nun geklärt werden.
 
Die Bezeichnung   bedeutet:
Die Wahrscheinlichkeit von B unter der Bedingung, dass A bereits eingetreten ist.
Diese Wahrscheinlichkeit heißt bedingte Wahrscheinlichkeit.
In Bezug auf die Fragestellung wird also   gesucht.
In Worten: Wie groß ist die Wahrscheinlichkeit dafür eine grüne Kugel gezogen zu haben, wenn man weiß, das die gezogene Kugel aus Kunststoff ist.
Es wird nach einer Wahrscheinlichkeit gesucht, die von einer Bedingung abhängt.
In diesem Fall lautet die Bedingung: Die gezogene Kugel ist aus Kunststoff.
Um die im Baumdiagramm noch fehlenden bedingten Wahrscheinlichkeiten auszurechnen, verwendet man die Pfadmultiplikationsregel:
 


Die Regel, nach der die bedingte Wahrscheinlichkeit berechnet wird, geht auf den englischen Mathematiker Thomas Bayes (1702 - 1761) zurück und wird daher auch Bayes'sche Regel oder auch Satz von Bayes genannt.
Sind   und   Ereignisse mit   dann gilt:
 


Berechnung der bedingten Wahrscheinlichkeiten:
 
 
 
 
Wenn man also weiß, dass die gezogene Kugel aus Kunststoff besteht,
dann ist die Wahrscheinlichkeit dafür, dass sie Farbe grün hat: 2/3.
Die Wahrscheinlichkeit eine grüne Kunststoffkugel zu ziehen ist hingegen 0,2.


Ein etwas anderer ZugangBearbeiten

Eine Urne enthält 3 grüne und 2 rote Kugeln.
Zwei Kugeln werden nacheinander ohne Zurücklegen gezogen.
Es werden vier Ereignisse definiert:
A: Grün wird im 1. Zug gezogen
B: Grün wird im 2. Zug gezogen.
C: Grün wird im ersten und zweiten Zug gezogen.
D: Grün im zweiten Zug unter der Bedingung, dass grün bereits im ersten Zug gezogen wurde.
Zu bestimmen sind die Wahrscheinlichkeiten aller Ereignisse.
Ein Baumdiagramm mit den Pfadwahrscheinlichkeiten veranschaulicht den Zusammenhang.
 
Dem Baumdiagramm sind folgende Ergebnisse zu entnehmen:
Grün im 1. Zug:   und
Grün im 2. Zug:  
Für grün im 1. Zug und grün im 2. Zug erhält man mit der Pfadmultiplikationsregel:
 
  wird abgelesen.
Der Wert von   wurde wie folgt ermittelt:
Unter der Voraussetzung (Bedingung) dass im 1. Zug grün gezogen wurde, weiß man, dass noch 2 grüne und 2 rote Kugeln in der Urne sind.
Die Wahrscheinlichkeit für grün im 2. Zug ist dann 1/2.
Für die Wahrscheinlichkeit von D (grün im 2. Zug) unter der Voraussetzung dass A (grün im 1. Zug) schon eingetreten ist, wählt man die Bezeichnung  .
Im dargestellten Fall gilt          
Für eine weitere Untersuchung dient der Ausschnitt aus dem Pfaddiagramm, in dem   vorkommt.

 

Ist nach der Wahrscheinlichkeit   gefragt, so kann obige Gleichung wie folgt umgeformt werden:
  für  
  ist die Wahrscheinlichkeit von   unter der Bedingung, dass   bereits eingetreten ist.
Wir überprüfen dieses Gesetz mit den vorliegenden Ergebnissen:
  und  
Aus dem Urnenversuch (mehrfaches ziehen ohne zurücklegen) geht klar hervor, das die Wahrscheinlichkeiten für die jeweils nächste Ziehung von der vorigen abhängt.
In einem solchen Fall sagt man, die Ereignisse sind voneinander abhängig.

Unabhängigkeit von EreignissenBearbeiten

Bei einem Urnenversuch (mehrfaches ziehen mit Zurücklegen), wird die Anfangsbedingung immer wieder hergestellt, so dass die Wahrscheinlichkeit für die jeweils nächste Ziehung gleich ist, wie bei der ersten.
In einem solchen Fall sagt man, die Ereignisse sind voneinander unabhängig.
Eine Urne enthält 3 grüne und 2 rote Kugeln. Zwei Kugeln werden nacheinander mit Zurücklegen gezogen.
Es werden vier Ereignisse definiert:
A: Grün wird im 1. Zug gezogen
B: Grün wird im 2. Zug gezogen.
C: Grün wird im ersten und zweiten Zug gezogen.
D: Grün im zweiten Zug unter der Bedingung, dass grün bereits im ersten Zug gezogen wurde.
Das Baumdiagramm mit den zugehörigen Pfadwahrscheinlichkeiten:
 
Dem Baumdiagramm sind folgende Ergebnisse zu entnehmen:
Grün im 1. Zug:   und
Grün im 2. Zug:  
Für grün im 1. Zug und grün im 2. Zug erhält man mit der Pfadmultiplikationsregel:
 
  wird abgelesen.
Die Wahrscheinlichkeit eine grüne Kugel zu ziehen bleibt immer gleich, da nach jedem Zug durch Zurücklegen der Kugel, die Ausgangssituation wieder hergestellt wird.
Die Wahrscheinlichkeit für grün im 2. Zug unter der Bedingung, das grün im 1. Zug bereits gezogen wurde ist  .
Ein Ausschnitt aus dem Baumdiagramm:
 
Eine Auflistung der Ergebnisse ergibt:


  und   und  
Es ist also  
Damit gilt mit der Pfadmultiplikationsregel:  
Gilt  , so beeinflusst das Eintreten des Ereignisses   die Wahrscheinlichkeit von   nicht.
Man sagt, die Ereignisse   und   sind unabhängig voneinander.
Unabhängige Ergebnisse Das Ereignis B heißt unabhängig vom Ereignis A, wenn das Eintreten von A die Wahrscheinlichkeit für das Eintreten von B nicht beeinflusst.

Es gilt:  
Beispiel: Urnenziehung mit Zurücklegen.

Merke Für den Nachweis der Unabhängigkeit zweier Ereignisse A und B geht man wie folgt vor:

Man berechnet  ;   und  .
Gilt  ,
dann sind die Ereignisse A und B voneinander unabhängig.

Beispiel zur statistischen UnabhängigkeitBearbeiten

Eine Umfrage an Schulen über die Essgewohnheiten der Schüler hat ergeben, dass 45% aller Schüler gerne Schokolade essen. 55% aller Schüler ziehen andere Süßigkeiten vor. 60% aller Schüler gaben an, Geschwister zu haben. 27% der Schüler essen gerne Schokolade und haben Geschwister.
Ein Schokoladenhersteller interessiert sich dafür, ob Schüler mit Geschwister eine besondere Vorliebe für Schokolade haben.
Anders ausgedrückt: Hat die Tatsache, das ein Schüler Geschwister hat, einen Einfluss auf seine Vorliebe für Schokolade?


Die Erhebungsdaten lassen sich in einer Vierfeld – Tafel darstellen:

 

 

 

Summe

 

 

 

 

 

 

 

 

Summe

 

 

 

Die zugehörigen Ereignisse sind:
A: Der Schüler hat Geschwister.           B: Der Schüler isst gerne Schokolade.
 

 
 

 
Die Ereignisse sind unabhängig voneinander.
Das bedeutet, ob ein Schüler Geschwister hat oder nicht, hat keinen Einfluss auf seine Vorliebe für Schokolade.

Zusammenhang zwischen Vierfeldtafel und BaumdiagrammBearbeiten

Ein Berufskolleg hat 1000 Schüler. Die folgende Vierfeldtafel gibt Aufschluss darüber, wie die Handys auf die Schüler verteilt sind.

 

  weiblich

  männlich

Summe

  besitzt ein Handy

 

 

 

  besitzt kein Handy

 

 

 

Summe

 

 

 

Die relativen Häufigkeiten werden berechnet und in eine neue Vierfeld - Tafel eingetragen.

 

  weiblich

  männlich

Summe

  besitzt ein Handy

 

 

 

  besitzt kein Handy

 

 

 

Summe

 

 

 

Folgende Vierfeld - Tafel zeigt die Bedeutung der Feldinhalte:
Allgemeine Form der Vierfeld - Tafel

 

 

 

Summe

 

 

 

 

 

 

 

 

Summe

 

 

 

Jeder Vierfeldtafel lässt sich ein Ereignisbaum zuordnen.
Baumdiagramm umgekehrtes Baumdiagramm

 

 

Vertauscht man bei einem Baumdiagramm die Reihenfolge der betrachteten Merkmale, dann erhält man das umgekehrte oder inverse Baumdiagramm.
Die Wahrscheinlichkeiten an den Pfadenden stimmen in beiden Baumdiagrammen bis auf die Reihenfolge überein.
Die Pfadwahrscheinlichkeiten und damit auch die bedingten Wahrscheinlichkeiten unterscheiden sich im Allgemeinen voneinander. Sie beziehen sich auf verschiedene Merkmale und daher auch auf verschiedene Teilgesamtheiten.


Baumdiagramm mit den bisher bekannten Wahrscheinlichkeiten:
   


Zur Berechnung der bedingten Wahrscheinlichkeiten eine Auflistung der relavanten Daten:

 

  weiblich

  männlich

Summe

  besitzt ein Handy

 

 

 

  besitzt kein Handy

 

 

 

Summe

 

 

 

Berechnung der bedingten Wahrscheinlichkeiten:
         
         
         
         


Baumdiagramm mit allen Wahrscheinlichkeiten:
   
Aus dem Baum lassen sich nun viele Informationen ablesen. Dazu einige Beispiele.
  • Die Wahrscheinlichkeit, mit der eine zufällig ausgewählte Person kein Handy besitzt ist:  
  • Die Wahrscheinlichkeit dafür, zufällig eine Frau auszuwählen ist:  
  • Wenn man weiß, das die zufällig ausgewählte Person kein Handy besitzt, ist die Wahrscheinlichkeit dafür, dass es sich bei der Person um einen Mann handelt:  
  • Wenn man weiß, das die zufällig ausgewählte Person weiblich, ist die Wahrscheinlichkeit dafür, dass sie ein Handy besitzt:  
Hat man den Zusammenhang einer Vierfeldtafel mit den Baumdiagrammen begriffen, dann lassen sich solche Aufgaben auch mit weniger Aufwand lösen. Das soll ein weiteres Beispiel zeigen.

Beispiel Spam-MailsBearbeiten

Viele Internetnutzer klagen über Spam-Mails.
Nehmen wir an, in 1% der guten und 40% der Spam- Mails komme das Wort ”Viagra“ vor.
Außerdem seien 10% der Mails gut und 90% Spam.
Wie groß ist die Wahrscheinlichkeit, dass eine Mail, von der man weiß, das in ihr das Wort ”Viagra“ vorkommt, eine Spam-Mail ist.?
Ereignisse:
A: Die E-Mail enthält das Wort ”Viagra“ .
B: Die E-Mail ist Spam.
Aufstellen der Vierfeldtafel mit den vorgegebenen Daten:
Die % Werte entsprechen den relativen Häufigkeiten (Wahrscheinlichkeiten).
90 % Spam bedeutet Summe Spam = 0,9
10% gute Mails bedeutet Summe gute Mails = 0,1
40% der Spam- Mails enthalten das Wort Viagra bedeutet 0,9   0,4 = 0,36
1% der guten Mails enthält das Wort Viagra bedeutet 0,1   0,01 = 0,001

 

  Spam

  gute Mail

Summe

  mit Viagra

 

 

 

  ohne Viagra

 

 

 

Summe

 

 

 

Die restliche Werte lassen sich ausrechnen, da die Summen bekannt sind.
Spam ohne Viagra: 0,9 – 0,36 = 0,54
Gute Mail ohne Viagra: 0,1 – 0,001 = 0,099
Summe aller Mails mit Viagra: 0,36 + 0,001 = 0,361
Summe aller Mails ohne Viagra: 0,54 + 0,099 = 0,639
Mit diesen Werten wird die Vierfeldtafel vervollständigt.

 

  Spam

  gute Mail

Summe

  mit Viagra

 

 

 

  ohne Viagra

 

 

 

Summe

 

 

 

Die Aufgabenstellung lautete:
Wie groß ist die Wahrscheinlichkeit, dass eine Mail, in der ”Viagra“ steht, Spam ist?
Gesucht ist also die Wahrscheinlichkeit von B unter der Bedingung, dass A bereits eingetreten ist.
 
Das bedeutet, in 99,7% aller Fälle ist eine Mail, von der man weiß, das in ihr das Wort Viagra steht, eine Spam- Mail.

Aufgaben im ZUM-Wiki

Weitere Informationen