Start
Zufällige Seite
Anmelden
Einstellungen
Spenden
Über Wikibooks
Haftungsausschluss
Suchen
Formelsammlung Mathematik: Wahrscheinlichkeitsverteilungen
Sprache
Beobachten
Bearbeiten
Diskrete Verteilungen
Bearbeiten
Name
Zähldichte
Erwartungswert
Varianz
Binomial-Verteilung
P
(
X
=
k
)
=
(
n
k
)
⋅
p
k
⋅
(
1
−
p
)
n
−
k
{\displaystyle P(X=k)={\binom {n}{k}}\cdot p^{k}\cdot (1-p)^{n-k}}
n
⋅
p
{\displaystyle n\cdot p}
n
⋅
p
⋅
(
1
−
p
)
{\displaystyle n\cdot p\cdot (1-p)}
Geometrische Verteilung
[
1
]
P
(
X
=
k
)
=
p
⋅
(
1
−
p
)
k
−
1
{\displaystyle P(X=k)=p\cdot (1-p)^{k-1}}
1
p
{\displaystyle {\frac {1}{p}}}
1
−
p
p
2
{\displaystyle {\frac {1-p}{p^{2}}}}
Hypergeometrische Verteilung
P
(
X
=
k
)
=
(
M
k
)
⋅
(
N
−
M
n
−
k
)
(
N
n
)
{\displaystyle P(X=k)={\frac {{\binom {M}{k}}\cdot {\binom {N-M}{n-k}}}{\binom {N}{n}}}}
n
⋅
M
N
{\displaystyle n\cdot {\frac {M}{N}}}
n
⋅
M
N
⋅
(
1
−
M
N
)
⋅
N
−
n
N
−
1
{\displaystyle n\cdot {\frac {M}{N}}\cdot \left(1-{\frac {M}{N}}\right)\cdot {\frac {N-n}{N-1}}}
Negative Binomial-Verteilung
[
2
]
P
(
X
=
k
)
=
(
k
−
1
r
−
1
)
⋅
p
r
⋅
(
1
−
p
)
k
−
r
{\displaystyle P(X=k)={\binom {k-1}{r-1}}\cdot p^{r}\cdot (1-p)^{k-r}}
r
p
{\displaystyle {\frac {r}{p}}}
r
⋅
(
1
−
p
)
p
2
{\displaystyle {\frac {r\cdot (1-p)}{p^{2}}}}
Poisson-Verteilung
P
(
X
=
k
)
=
λ
k
k
!
⋅
e
−
λ
{\displaystyle P(X=k)={\frac {\lambda ^{k}}{k!}}\cdot e^{-\lambda }}
λ
{\displaystyle \lambda }
λ
{\displaystyle \lambda }
Quellen
Bearbeiten
↑
Es existieren zwei verschiedene Definitionen der geometrischen Verteilung, siehe
Wikipedia
↑
Auch zu der negativen Binomial-Verteilung existiert eine alternative Definition, siehe
Wikipedia
Stetige Verteilungen
Bearbeiten
Name
Dichte
Erwartungswert
Varianz
Erlang-Verteilung
f
(
x
)
=
λ
n
⋅
x
n
−
1
(
n
−
1
)
!
⋅
e
−
λ
⋅
x
,
x
≥
0
{\displaystyle f(x)={\frac {\lambda ^{n}\cdot x^{n-1}}{(n-1)!}}\cdot e^{-\lambda \cdot x},x\geq 0}
n
λ
{\displaystyle {\frac {n}{\lambda }}}
n
λ
2
{\displaystyle {\frac {n}{\lambda }}^{2}}
Exponential-Verteilung:
E
(
λ
)
{\displaystyle {\mathcal {E}}(\lambda )}
f
(
x
)
=
λ
⋅
e
−
λ
⋅
x
,
x
≥
0
{\displaystyle f(x)=\lambda \cdot e^{-\lambda \cdot x},x\geq 0}
1
λ
{\displaystyle {\frac {1}{\lambda }}}
1
λ
2
{\displaystyle {\frac {1}{\lambda ^{2}}}}
Gamma-Verteilung:
Γ
(
α
,
β
)
{\displaystyle \Gamma (\alpha ,\beta )}
f
(
x
)
=
β
α
Γ
(
α
)
⋅
x
α
−
1
⋅
e
−
β
⋅
x
,
x
>
0
{\displaystyle f(x)={\frac {\beta ^{\alpha }}{\Gamma (\alpha )}}\cdot x^{\alpha -1}\cdot e^{-\beta \cdot x},x>0}
α
β
{\displaystyle {\frac {\alpha }{\beta }}}
α
β
2
{\displaystyle {\frac {\alpha }{\beta ^{2}}}}
Gleichverteilung:
U
(
a
,
b
)
{\displaystyle {\mathcal {U}}(a,b)}
f
(
x
)
=
1
b
−
a
,
x
∈
[
a
,
b
]
{\displaystyle f(x)={\frac {1}{b-a}},x\in [a,b]}
a
+
b
2
{\displaystyle {\frac {a+b}{2}}}
1
12
⋅
(
b
−
a
)
2
{\displaystyle {\frac {1}{12}}\cdot (b-a)^{2}}
Normal-Verteilung:
N
(
μ
,
σ
2
)
{\displaystyle {\mathcal {N}}(\mu ,\sigma ^{2})}
f
(
x
)
=
1
2
π
σ
2
⋅
e
−
(
x
−
μ
)
2
2
⋅
σ
2
{\displaystyle f(x)={\frac {1}{\sqrt {2\pi \sigma ^{2}}}}\cdot e^{-{\frac {(x-\mu )^{2}}{2\cdot \sigma ^{2}}}}}
μ
{\displaystyle \mu }
σ
2
{\displaystyle \sigma ^{2}}
Lognormal-Verteilung:
L
N
(
μ
,
σ
2
)
{\displaystyle {\mathcal {LN}}(\mu ,\sigma ^{2})}
f
(
x
)
=
1
2
π
σ
2
⋅
x
⋅
e
−
(
ln
(
x
)
−
μ
)
2
2
⋅
σ
2
{\displaystyle f(x)={\frac {1}{{\sqrt {2\pi \sigma ^{2}}}\cdot x}}\cdot e^{-{\frac {(\ln(x)-\mu )^{2}}{2\cdot \sigma ^{2}}}}}
e
μ
+
σ
2
2
{\displaystyle e^{\mu +{\frac {\sigma ^{2}}{2}}}}
e
2
μ
+
σ
2
⋅
(
e
σ
2
−
1
)
{\displaystyle e^{2\mu +\sigma ^{2}}\cdot (e^{\sigma ^{2}}-1)}