Zurück zu Unendliche Reihen
∑ k = 0 ∞ ( − 1 ) k α + β k = ∑ k = 0 ∞ ( 1 α + β ⋅ 2 k − 1 α + β ( 2 k + 1 ) ) {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}}{\alpha +\beta \,k}}=\sum _{k=0}^{\infty }\left({\frac {1}{\alpha +\beta \cdot 2k}}-{\frac {1}{\alpha +\beta \,(2k+1)}}\right)} = 1 2 β ∑ k = 0 ∞ ( 1 α 2 β + k − 1 1 2 + α 2 β + k ) = 1 2 β [ ψ ( 1 2 + α 2 β ) − ψ ( α 2 β ) ] {\displaystyle ={\frac {1}{2\beta }}\sum _{k=0}^{\infty }\left({\frac {1}{{\frac {\alpha }{2\beta }}+k}}-{\frac {1}{{\frac {1}{2}}+{\frac {\alpha }{2\beta }}+k}}\right)={\frac {1}{2\beta }}\left[\psi \left({\frac {1}{2}}+{\frac {\alpha }{2\beta }}\right)-\psi \left({\frac {\alpha }{2\beta }}\right)\right]}