Es ist
1
p
+
1
q
=
p
+
q
p
q
⇒
1
p
(
p
+
q
)
+
1
q
(
p
+
q
)
=
1
p
q
{\displaystyle {\frac {1}{p}}+{\frac {1}{q}}={\frac {p+q}{p\,q}}\Rightarrow {\frac {1}{p\,(p+q)}}+{\frac {1}{q\,(p+q)}}={\frac {1}{p\,q}}}
.
Setze
p
=
a
2
+
x
2
{\displaystyle p=a^{2}+x^{2}\,}
und
q
=
a
2
+
y
2
{\displaystyle q=a^{2}+y^{2}\,}
und integriere nach
x
{\displaystyle x\,}
und
y
{\displaystyle y\,}
jeweils von
0
{\displaystyle 0\,}
bis
1
{\displaystyle 1\,}
.
∫
0
1
∫
0
1
d
x
d
y
(
a
2
+
x
2
)
(
2
a
2
+
x
2
+
y
2
)
+
∫
0
1
∫
0
1
d
y
d
x
(
a
2
+
y
2
)
(
2
a
2
+
x
2
+
y
2
)
=
∫
0
1
d
x
a
2
+
x
2
⋅
∫
0
1
d
y
a
2
+
y
2
{\displaystyle \int _{0}^{1}\int _{0}^{1}{\frac {dx\,dy}{(a^{2}+x^{2})(2a^{2}+x^{2}+y^{2})}}+\int _{0}^{1}\int _{0}^{1}{\frac {dy\,dx}{(a^{2}+y^{2})(2a^{2}+x^{2}+y^{2})}}=\int _{0}^{1}{\frac {dx}{a^{2}+x^{2}}}\cdot \int _{0}^{1}{\frac {dy}{a^{2}+y^{2}}}}
Vertauscht man die Rollen von
x
{\displaystyle x\,}
und
y
{\displaystyle y\,}
, so erkennt man, dass beide Integrale auf der linken Seite gleich sind und dass beide Integrale auf der rechten Seite gleich sind.
Also ist
2
∫
0
1
∫
0
1
d
x
a
2
+
x
2
d
y
2
a
2
+
x
2
2
+
y
2
=
(
1
a
arctan
1
a
)
2
{\displaystyle 2\int _{0}^{1}\int _{0}^{1}{\frac {dx}{a^{2}+x^{2}}}\,{\frac {dy}{{\sqrt {2a^{2}+x^{2}}}^{2}+y^{2}}}=\left({\frac {1}{a}}\arctan {\frac {1}{a}}\right)^{2}}
⇒
∫
0
1
2
a
2
a
2
+
x
2
arctan
y
2
a
2
+
x
2
2
a
2
+
x
2
|
0
1
d
x
=
(
arctan
1
a
)
2
{\displaystyle \Rightarrow \int _{0}^{1}{\frac {2a^{2}}{a^{2}+x^{2}}}\,\left.{\frac {\arctan {\frac {y}{\sqrt {2a^{2}+x^{2}}}}}{\sqrt {2a^{2}+x^{2}}}}\right|_{0}^{1}\,dx=\left(\arctan {\frac {1}{a}}\right)^{2}}
.
Schreibe nun
arctan
1
2
a
2
+
x
2
{\displaystyle \arctan {\frac {1}{\sqrt {2a^{2}+x^{2}}}}}
als
π
2
−
arctan
2
a
2
+
x
2
{\displaystyle {\frac {\pi }{2}}-\arctan {\sqrt {2a^{2}+x^{2}}}}
.
∫
0
1
2
a
2
a
2
+
x
2
π
2
2
a
2
+
x
2
d
x
⏟
π
arctan
x
2
a
2
+
x
2
|
0
1
−
∫
0
1
2
a
2
a
2
+
x
2
arctan
2
a
2
+
x
2
2
a
2
+
x
2
d
x
=
(
arctan
1
a
)
2
{\displaystyle \underbrace {\int _{0}^{1}{\frac {2a^{2}}{a^{2}+x^{2}}}\,{\frac {\frac {\pi }{2}}{\sqrt {2a^{2}+x^{2}}}}\,dx} _{\pi \left.\arctan {\frac {x}{\sqrt {2a^{2}+x^{2}}}}\right|_{0}^{1}}-\int _{0}^{1}{\frac {2a^{2}}{a^{2}+x^{2}}}\,{\frac {\arctan {\sqrt {2a^{2}+x^{2}}}}{\sqrt {2a^{2}+x^{2}}}}\,dx=\left(\arctan {\frac {1}{a}}\right)^{2}}