Benutzer:Chris Ke/Spielwiese Quantoren

Was sind Quantoren?

Bearbeiten

Neben den Junktoren gibt es noch eine zweite wichtige Gruppe von Symbolen, die Quantoren, mit denen sich die Aussagenlogik zur sogenannten Prädikatenlogik erweitern lässt. Während Junktoren Aussagen miteinander verknüpfen, legen Quantoren fest, für welche Objekte   einer Grundmenge eine Aussageform   gilt. Eine Aussageform (auch Prädikat genannt)   ist dabei ein sprachlich sinnvoller Ausdruck, in der die Variable   vorkommt und die durch Belegung dieser Variablen mit einem konkreten Wert in eine Aussage übergeht. So sind die Ausdrücke

  ist eine gerade Zahl

und

  ist ein Mensch

Beispiele für solche Aussageformen  , die von der Variablen   abhängen.

Ich möchte dir den Begriff der Quantoren an einem Beispiel erklären. Stelle dir dazu vor, wir untersuchen gerade die Menge der reellen Zahlen. Dies bedeutet, dass alle Variablen, die wir benutzen, nur mit reellen Zahlen belegt werden sollen. Betrachte nun folgende Aussage:

Für alle   gilt, dass   ist.

In diesem Beispiel ist „für alle“ ein Quantor, der Allquantor. Er behauptet, dass die Aussageform   für alle Belegungen der Variablen   wie zum Beispiel  ,   oder   gültig sein soll. Wir können also folgende Struktur der obigen Aussage erkennen:

 

Wie auch bei Junktoren, werden für Quantoren bestimmte Symbole verwendet. Für den Allquantor ist das Symbol   am geläufigsten. So kann die obige Aussage „Für alle   gilt, dass   ist.“ auch so geschrieben werden:

 

Wir können aber auch andere Quantoren zur Bindung der Variablen   in der Aussageform   verwenden. Anstatt auszudrücken, dass die Aussageform   für alle Belegungen von   gültig ist, können wir auch sagen, dass diese Aussageform für mindestens eine reelle Zahl   wahr ist. Dieser Quantor „es gibt mindestens ein“ wird Existenzquantor genannt und hat das Symbol  . So besitzt die Aussage „Es gibt mindestens ein   mit  “ folgende Struktur:

 

Formal aufgeschrieben wird daraus:

 

Aufgabe: Sind obige Aussagen   und   für reelle Zahlen wahr oder falsch?

  • Die Aussage   ist falsch, da sie für die erlaubte Belegung   nicht stimmt. Es ist nämlich  .
  • Die Aussage   ist wahr, da die Zahl   eine reelle Zahl ist und somit die Belegung   erlaubt ist. Da   gilt, existiert eine reelle Zahl für welche die Aussageform korrekt ist.

Quantoren

Bearbeiten

Allquantor  

Bearbeiten
Allquantor
Symbol:  
Bedeutung: „für alle“ oder „für jede(s)“
Schreibweise:  

Im vorherigen Abschnitt hast du den Allquantor bereits kennen gelernt. Sein Symbol ist   (ein umgedrehtes A – „für Alle“). Die Schreibweise des Allquantors ist  . Dies bedeutet „Für alle   gilt  .“ oder „Für jedes   gilt  .“. Dabei ist   eine beliebige Aussageform, in der die Variable   vorkommt. In der Literatur ist auch die Schreibweise   zu finden, die wir aber in diesem Buch nicht verwenden werden.

Die Menge der Objekte, auf die sich der Quantor bezieht, muss eindeutig bestimmt sein (und kann sich zum Beispiel aus dem Kontext ergeben). Wenn du eben natürliche Zahlen behandelst, so behauptet eine Aussage  , dass die Aussageform   für alle Belegungen von   aus den natürlichen Zahlen wahr ist. Untersuchst du reelle Zahlen, so behauptet  , dass die Aussageform   für alle reellen Zahlen   zu einer wahren Aussage wird.

Wenn du die Bezugsmenge des Allquantors explizit angeben möchtest oder musst, kannst du die deutlichere Schreibweise   verwenden. Diese bedeutet: „Für alle   aus der Menge   gilt die Aussage  .“

Aufgabe: Überlege dir einige (mathematische) Aussagen, in denen du den Allquantor verwenden kannst und schreib diese auf.

Folgende Beispiele können mit dem Allquantor aufgeschrieben werden:

  1. Für jedes Auto gilt: Es fährt oder es steht.
  2. Für alle reellen Zahlen   und alle natürlichen Zahlen   ist  .
  3. Alle Schwäne sind weiß.

Frage: Wie lauten die obigen Aussagen in Quantorenschreibweise?

  1.  
  2.  
  3.  

Existenzquantor  

Bearbeiten
Existenzquantor
Symbol:  
Bedeutung: es existiert mindestens ein
Schreibweise:  

Dieser Quantor wird für Aussagen folgender Form verwendet: „Es gibt mindestens ein  , so dass   gilt“. Dieser Quantor heißt Existenzquantor. Sein Symbol ist ein vertikal gespiegeltes E, welches für „es Existiert mindestens ein“ steht. Analog zum Allquantor haben Existenzaussagen die Form  . Diese Schreibweise steht für „Es gibt mindestens ein  , so dass   gilt.“ oder „Es existiert mindestens ein  , für welches   gilt“. Auch hier ist   eine Variable und   eine Aussageform, die von   abhängt. In der Literatur kannst du auch die Schreibweise   finden.

Wie auch beim Allquantor muss die Bezugsmenge   des Quantors klar sein (z. B. aus dem Kontext). Muss die Bezugsmenge explizit angegeben werden, so kannst du die Schreibweise   verwenden. Sie bedeutet: „Es gibt mindestens ein   aus der Menge  , für welches die Aussage   wahr ist“. Es kann sein, dass es ein solches x nicht gibt.

Hinweis

In der Mathematik gibt es folgende Konvention: Eine Aussage der Form „Es gibt ein …“ ist immer als Aussage der Form „Es gibt mindestens ein …“ zu verstehen.

Verständnisfrage: Übersetze folgende Aussagen in die formelle Schreibweise mit dem Existenzquantor:

  1. Es gibt eine Zahl  , so dass   ist.
  2. Es gibt schöne Männer.
  3. Jeder Mensch besitzt einen Seelenverwandten.

Antwort:

  1.  
  2.  
  3.  

Eindeutiger Existenzquantor  

Bearbeiten
Eindeutiger Existenzquantor
Symbol:   oder  
Bedeutung: es existiert genau ein
Schreibweise:  

Den letzten Quantor, den ich dir vorstellen möchte, ist der eindeutige Existenzquantor  . Die Schreibweise zu diesem Quantor (der auch Eindeutigkeitsquantor genannt wird) ist  . Dies bedeutet soviel wie „Es gibt genau ein  , so dass die Aussageform   für dieses   zu einer wahren Aussage ist.“. Beachte den Unterschied zwischen dem Existenzquantor und dem eindeutigen Existenzquantor: Während beim Existenzquantor die Aussageform   für mindestens eine Belegung von   gilt, gilt beim eindeutigen Existenzquantor die Aussageform   für genau eine Belegung von   aus der Grundmenge.

Auch bei diesem Quantor muss sich die Bezugsmenge durch den Kontext ergeben. Wenn du sie explizit angeben möchtest, kannst du die Schreibweise   verwenden. Sie ist eine Kurzschreibweise für  . Eine alternative und in der Literatur auch verbreitete Schreibweise für den eindeutigen Existenzquantor ist  .

Verständnisfrage: Sind folgende Aussagen wahr?

  1.  
  2.  
  3.  

Antwort:

  1. Wahr, da   und   gilt.
  2. Falsch, da   und   gilt. Somit gibt es kein eindeutiges Element   mit  .
  3. Wahr, da   die einizige natürliche Zahl ist, welche zu   quadriert. Man beachte hier, dass   keine natürliche Zahl ist.