Dies ist eine Arbeitsversion!
Funktion: y = x 2 {\displaystyle y=x^{2}}
Methode1: y ′ = d y d x = lim x → x 0 y − y 0 x − x 0 {\displaystyle y'={\frac {dy}{dx}}=\lim _{x\rightarrow x_{0}}{\frac {y-y_{0}}{x-x_{0}}}}
y ′ = d y d x = lim x → x 0 x 2 − x 0 2 x − x 0 {\displaystyle y'={\frac {dy}{dx}}=\lim _{x\rightarrow x_{0}}{\frac {x^{2}-x_{0}^{2}}{x-x_{0}}}}
Methode2: d d x f ( x ) = lim h → 0 f ( x + h ) − f ( x ) h = lim h → 0 f ( x ) − f ( x − h ) h {\displaystyle {\frac {d}{dx}}f(x)=\lim _{h\rightarrow 0}{\frac {f(x+h)-f(x)}{h}}=\lim _{h\rightarrow 0}{\frac {f(x)-f(x-h)}{h}}} d d x f ( x ) = lim h → 0 ( x + h ) 2 − x 2 h {\displaystyle {\frac {d}{dx}}f(x)=\lim _{h\rightarrow 0}{\frac {(x+h)^{2}-x^{2}}{h}}}
Methode 2b: y = x 2 {\displaystyle y=x^{2}\ } y + δ y = ( x + δ x ) 2 {\displaystyle y+\delta y=(x+\delta x)^{2}\ } δ y = ( x + δ x ) 2 − x 2 {\displaystyle \delta y=(x+\delta x)^{2}-x^{2}\ } δ y = x 2 + 2 x δ x + δ x 2 − x 2 {\displaystyle \delta y=x^{2}+2x\delta x+\delta x^{2}-x^{2}\ } δ y = 2 x δ x + δ x 2 {\displaystyle \delta y=2x\delta x+\delta x^{2}\ } δ y δ x = 2 x + δ x {\displaystyle {\frac {\delta y}{\delta x}}=2x+\delta x} y ′ = d y d x = lim δ x → 0 δ y δ x = 2 x + δ x {\displaystyle y'={\frac {dy}{dx}}=\lim _{\delta x\rightarrow 0}{\frac {\delta y}{\delta x}}=2x+\delta x} y ′ = d y d x = 2 x {\displaystyle y'={\frac {dy}{dx}}=2x}
Methode3: y = x 2 {\displaystyle y=x^{2}\ } y = x {\displaystyle {\sqrt {y}}=x} y ′ 1 2 y = 1 {\displaystyle y'{\frac {1}{2{\sqrt {y}}}}=1} y ′ = 2 y {\displaystyle y'=2{\sqrt {y}}} y ′ = 2 x {\displaystyle y'=2x\ }
Methode4: y = x ⋅ x {\displaystyle y=x\cdot x} y ′ = 1 ⋅ x + x ⋅ 1 {\displaystyle y'=1\cdot x+x\cdot 1} y ′ = 2 x {\displaystyle y'=2x\ }