Dies ist eine Arbeitsversion!
Funktion: y = x {\displaystyle y={\sqrt {x}}}
Methode1: y ′ = d y d x = lim x → x 0 y − y 0 x − x 0 {\displaystyle y'={\frac {dy}{dx}}=\lim _{x\rightarrow x_{0}}{\frac {y-y_{0}}{x-x_{0}}}}
y ′ = d y d x = lim x → x 0 x − x 0 x − x 0 {\displaystyle y'={\frac {dy}{dx}}=\lim _{x\rightarrow x_{0}}{\frac {{\sqrt {x}}-{\sqrt {x_{0}}}}{x-x_{0}}}}
Methode2: d d x f ( x ) = lim h → 0 f ( x + h ) − f ( x ) h = lim h → 0 f ( x ) − f ( x − h ) h {\displaystyle {\frac {d}{dx}}f(x)=\lim _{h\rightarrow 0}{\frac {f(x+h)-f(x)}{h}}=\lim _{h\rightarrow 0}{\frac {f(x)-f(x-h)}{h}}} d d x f ( x ) = lim h → 0 x + h − x h {\displaystyle {\frac {d}{dx}}f(x)=\lim _{h\rightarrow 0}{\frac {{\sqrt {x+h}}-{\sqrt {x}}}{h}}}
Methode2b: y = x {\displaystyle y={\sqrt {x}}}
Methode3:
y = x {\displaystyle y={\sqrt {x}}} y 2 = x {\displaystyle y^{2}=x\ } y ′ 2 x = 1 {\displaystyle y'2x=1\ } y ′ = 1 2 y {\displaystyle y'={\frac {1}{2y}}} y ′ = 1 2 x {\displaystyle y'={\frac {1}{2{\sqrt {x}}}}}