Dies ist eine Arbeitsversion!
Funktion: y = 3 x 2 + 6 x + 12 {\displaystyle y=3x^{2}+6x+12}
Methode1: y ′ = d y d x = lim x → x 0 y − y 0 x − x 0 {\displaystyle y'={\frac {dy}{dx}}=\lim _{x\rightarrow x_{0}}{\frac {y-y_{0}}{x-x_{0}}}}
y ′ = d y d x = lim x → x 0 ( 3 x 2 + 6 x + 12 ) − ( 3 x 0 2 + 6 x 0 + 12 ) x − x 0 {\displaystyle y'={\frac {dy}{dx}}=\lim _{x\rightarrow x_{0}}{\frac {(3x^{2}+6x+12)-(3x_{0}^{2}+6x_{0}+12)}{x-x_{0}}}}
Methode2: d d x f ( x ) = lim h → 0 f ( x + h ) − f ( x ) h = lim h → 0 f ( x ) − f ( x − h ) h {\displaystyle {\frac {d}{dx}}f(x)=\lim _{h\rightarrow 0}{\frac {f(x+h)-f(x)}{h}}=\lim _{h\rightarrow 0}{\frac {f(x)-f(x-h)}{h}}} d d x f ( x ) = lim h → 0 ( 3 ( x + h ) 2 + 6 ( x + h ) + 12 ) − ( 3 x 2 + 6 x + 12 ) h {\displaystyle {\frac {d}{dx}}f(x)=\lim _{h\rightarrow 0}{\frac {(3(x+h)^{2}+6(x+h)+12)-(3x^{2}+6x+12)}{h}}} d d x f ( x ) = lim h → 0 ( 3 ( x 2 + 2 h x + h 2 ) + 6 ( x + h ) + 12 ) − ( 3 x 2 + 6 x + 12 ) h {\displaystyle {\frac {d}{dx}}f(x)=\lim _{h\rightarrow 0}{\frac {(3(x^{2}+2hx+h^{2})+6(x+h)+12)-(3x^{2}+6x+12)}{h}}} d d x f ( x ) = lim h → 0 3 x 2 + 6 h x + 3 h 2 + 6 x + 6 h + 12 − 3 x 2 − 6 x − 12 h {\displaystyle {\frac {d}{dx}}f(x)=\lim _{h\rightarrow 0}{\frac {3x^{2}+6hx+3h^{2}+6x+6h+12-3x^{2}-6x-12}{h}}} d d x f ( x ) = lim h → 0 6 h x + 3 h 2 + 6 h h {\displaystyle {\frac {d}{dx}}f(x)=\lim _{h\rightarrow 0}{\frac {6hx+3h^{2}+6h}{h}}}
Methode 2b: y = 3 x 2 + 6 x + 12 {\displaystyle y=3x^{2}+6x+12} y + δ y = 3 ( x + δ x ) 2 + 6 ( x + δ x ) + 12 {\displaystyle y+\delta y=3(x+\delta x)^{2}+6(x+\delta x)+12} δ y = ( 3 ( x + δ x ) 2 + 6 ( x + δ x ) + 12 ) − ( 3 x 2 + 6 x + 12 ) {\displaystyle \delta y=(3(x+\delta x)^{2}+6(x+\delta x)+12)-(3x^{2}+6x+12)} δ y = ( 3 ( x 2 + 2 x δ x + δ x 2 ) + 6 ( x + δ x ) + 12 ) − ( 3 x 2 + 6 x + 12 ) {\displaystyle \delta y=(3(x^{2}+2x\delta x+\delta x^{2})+6(x+\delta x)+12)-(3x^{2}+6x+12)} δ y = 3 x 2 + 6 x δ x + 3 δ x 2 + 6 x + 6 δ x + 12 − 3 x 2 − 6 x − 12 {\displaystyle \delta y=3x^{2}+6x\delta x+3\delta x^{2}+6x+6\delta x+12-3x^{2}-6x-12} δ y = 6 x δ x + 3 δ x 2 + 6 δ x {\displaystyle \delta y=6x\delta x+3\delta x^{2}+6\delta x} δ y δ x = 6 x + 3 δ x + 6 {\displaystyle {\frac {\delta y}{\delta x}}=6x+3\delta x+6} y ′ = d y d x = lim δ x → 0 δ y δ x = 6 x + 3 δ x + 6 {\displaystyle y'={\frac {dy}{dx}}=\lim _{\delta x\rightarrow 0}{\frac {\delta y}{\delta x}}=6x+3\delta x+6} y ′ = d y d x = 6 x + 6 {\displaystyle y'={\frac {dy}{dx}}=6x+6}
Methode3: y = x 2 {\displaystyle y=x^{2}} y = x {\displaystyle {\sqrt {y}}=x} y ′ 1 2 y = 1 {\displaystyle y'{\frac {1}{2{\sqrt {y}}}}=1} y ′ 1 = 2 y {\displaystyle y'1=2{\sqrt {y}}} y ′ = 2 x {\displaystyle y'=2x}
Methode4: y = x ∗ x {\displaystyle y=x*x} y ′ = 1 ∗ x + x ∗ 1 {\displaystyle y'=1*x+x*1} y ′ = 2 x {\displaystyle y'=2x}