Praktikum Organische Chemie/ Trennung und Isolierung niedermolekularer organischer Verbindungen/ Lösungsmittel als Hilfsstoffe des Chemikers

Trennung durch Ausnutzung unterschiedlicher LöslichkeitBearbeiten

Extraktion von FeststoffenBearbeiten

Die Löslichkeit von chemischen Verbindungen ist sehr verschieden. Sie hängt ab von der Natur des zu lösenden Stoffes und dem Lösungsmittel. Zeigen Substanzen in einem Gemisch unterschiedliche Löslichkeit, so können sie häufig mit einem geeigneten Lösungsmittel selektiv herausgelöst werden. Trotzdem ist es meistens nicht so, dass eine Verbindung aus einem Gemisch allein herausgelöst wird, sondern die gewünschte Verbindung ist meistens von anderen Verbindungen begleitet. Daher müssen in der Regel weitere Trennoperationen angeschlossen werden, z. B. die Kristallisation oder die Chromatographie. Das Herauslösen von Komponenten aus einem Gemisch fester Stoffe, die sog. Fest-Flüssig-Extraktion, braucht keinen hohen Aufwand. Im einfachsten Fall wird die Substanz in der Kälte mit Lösungsmittel verrieben (digeriert). Behandelt man Pflanzenmaterial (z.B. pflanzliche Drogen) mit kaltem Wasser oder organischem Lösungsmittel, so spricht man von Mazerieren. Häufig erhitzt man jedoch mit Lösungsmittel bei aufgesetztem Rückflusskühler zum Sieden (Auskochen). Dazu benötigt man folgende Glasgeräte:

Abb. 1-1. Glasgeräte zum Kochen unter Rückfluss: Rundkolben, Rückflusskühler (Kugelkühler und Schlangenkühler). Rundkolben, im allgemeinen mit Normschliff NS 29, Rückflusskühler, im allgemeinen mit Normschliff NS 29,

Das Erhitzen des Kolbens mit dem Lösungsmittel erfolgt meistens nicht direkt, sondern durch ein Heizbad, je nach dem Siedepunkt des Lösungsmittels ein Wasserbad oder Ölbad. Für Extraktionen mit nichtbrennbaren, tiefsiedenden Lösungsmitteln (z.B. Dichlormethan) kann ein mit einem Bunsenbrenner beheiztes Wasserbad verwendet werden:

 
Extraktion mit Dichlormethan

Abb. 1-2. Auskochen mit Dichlormethan im Wasserbad.

Im Forschungslabor verwendet man oft Heizhauben, doch muss dabei beachtet werden, dass sich empfindliche Substanzen durch Überhitzung zersetzen können. Heizbäder sind schonender. Abbildung 1-2 zeigt den schematischen Aufbau einer Standard-Apparatur. Hier wird ein Magnetrührer mit aufgesetztem Heizbad verwendet. Durch das magnetische Rühren sollen "Siedeverzüge" verhindert werden.

 
Apparatur zum Auskochen eines Feststoffs

Abbildung 1-3. Apparatur zum Auskochen eines Feststoffes mit Lösungsmitteln (Aufbauschema).


Um die zu extrahierenden Stoffe in möglichst guter Ausbeute zu gewinnen, werden Extraktionen meistens mehrfach wiederholt. Kontinuierliche Fest-Flüssig-Extraktionen werden in dem sog. Soxhlet-Extraktor durchgeführt (Abb. 1-4).

 
Apparatur zur Fest-flüssig-Extraktion (Soxhlet)

Abb. 1-4: Apparatur zur Fest-flüssig-Extraktion (Soxhlet).

 
Soxhlet-Extraktor
 
Soxhlet-Extraktor


Abb. 1-5 Funktion von Soxhlet-Extraktoren.

Soxhlet-Extraktoren besitzen einen Heber, der in Intervallen die eben gefüllte Extraktionshülse vollständig entleert. Im Extraktionsteil des üblichen Soxhlet findet eine teilweise Aufwärmung statt, die im allgemeinen vernachlässigt werden kann. Wenn bei der fraktionierenden Extraktion ein Stoff in der Kälte selektiv löslich ist, muss jedoch kalt extrahiert werden, im Soxhlet-Kaltextraktor mit Kühlmantel. Für Extraktionen bei hoher Temperatur wird der Soxhlet-Heißextraktor verwendet, bei dem die Hülse durch den Dampf geheizt und durch den Heber wie üblich in Intervallen entleert wird.


Es sei daran erinnert, dass Extraktionen nicht nur im Labor und in der Analyse, sondern auch in der industriellen Praxis eine große Rolle spielen. Tabelle 1-1 gibt einige Beispiele

Tabelle 1-1

Extraktionen von biologischen Rohstoffen
Rohstoff Lösungsmittel Extrahierter Stoff
Zuckerrüben
Zuckerrohr
Wasser Saccharose
Öl- und fetthaltige Pflanzenfrüchte und
–Samen, evt. vorher ausgepresst
n-Hexan u.a. KW
Ethanol
Öle und Fette (Glyzeride)
Fischmehl n-Hexan u.a. KW Glyzeride
Carnaubapalmen-Blätter Heptan u.a. KW Carnaubawachs
Kaffeebohnen Dichlormethan
l,2-Dichlorethan
überkritisches CO2
Koffein
Cinchona-Rinde, vorbehandelt
mit NaOH und CaCO3
aromatische KW Chinin
Koka-Blätter
(Erythroxylon coca)
50%ige Essigsäure oder
verd. H2SO4
Kokain

Lösungsmittel und Gelöstes. Zur Theorie der LösungsmittelBearbeiten

‘‘Die Chemiker setzen das Lösungsmittel an die erste Stelle aller Hilfsmittel und rühmen sich, mit seiner Hilfe alle die wunderbaren Wirkungen ihrer Kunst ausführen zu können‘‘ (H.Boerhave (1664-1732): De menstruis dictis in chemia, in Elementa Chemiae, zit. nach Lit. 1.)

Worauf beruht die Löslichkeit? Sieht man von Erscheinungen, die auf die Lösungsentropie zurückzuführen sind, ab, so lässt sich allgemein feststellen, dass die zwischenmolekularen Kräfte zwischen Lösungsmittelmolekülen und Molekülen des gelösten Stoffes (Soluts) die gegenseitige Löslichkeit bestimmen. Eine Verbindung X (Solut) wird sich nur dann in einem Lösungsmittel S (Solvens) lösen, wenn die intermolekularen Anziehungskräfte K (X...X) und K (S...S) für die reinen Verbindungen kleiner sind als die Kräfte zwischen Solut- und Solvens-Molekülen K (X...S).

Für den Vorgang der Lösung eines Stoffes in einem Lösungsmittel kann man sich folgende einfache Modellvorstellung machen: Moleküle des Lösungsmittels müssen verdrängt werden, um Platz für das zu lösende Molekül zu schaffen. Der im Lösungsmittel gebildete Hohlraum (engl. cavity) nimmt das zu lösende Molekül auf. Bei der Hohlraumbildung müssen zwischenmolekulare Anziehungskräfte zwischen den Lösungsmittelmolekülen (Kohäsionkräfte) überwunden werden. Als ein Maß für die Energie, die nötig ist, um Lösungsmittelmoleküle voneinander zu trennen, kann die molare Verdampfungswärme dienen, welche durch das Molvolumen des Lösungsmittels dividiert wird; der Quotient wird als Kohäsionsenergiedichte bezeichnet:

 

wobei Mr die relative Molekülmasse des Lösungsmittels, ρ dessen Dichte und R die allgemeine Gaskonstante ist. Die Quadratwurzel der Kohösionsenergiedichte wurde von Hildebrand als Löslichkeitsparameter δ definiert.

 

Es wurde postuliert, dass bei nichtionischen Verbindungen dann eine hohe Löslichkeit zu erwarten sei, wenn sich die δ-Werte von Solvens und Solut nicht stark unterscheiden.

Das Hohlraum-Modell genügt zur quantitativen Erklärung von Löslichkeiten nicht; es müssen noch spezifische Wechselwirkungskräfte zwischen Molekülen des Lösungsmittels und des gelösten Stoffes sowie Entropie-Effekte berücksichtigt werden. Zwischenmolekulare Kräfte, die in Lösungsmitteln eine besonders große Rolle spielen, sind:

  • van der Waals-Kräfte

Bei einem bestimmten Abstand zwischen Molekülen (der Summe der van der Waals-Radien) treten schwache, attraktive Wechselwirkungskräfte auf. Sie sind umso stärker, je leichter polarisierbar die Elektronenhülle ist.

  • Dipol-Kräfte

Die meisten Moleküle sind aus Atomen verschiedener Elektronegativität aufgebaut und besitzen daher eine unsymmetrische Ladungsverteilung. Die molekularen Dipole ziehen sich gegenseitig an (Dipol-Dipol-Wechselwirkung) oder induzieren Dipolmomente in benachbarten polarisierbaren Molekülen. Die durch Dipole ausgeübten zwischenmolekularen Kräfte sind stärker als die van der Waals-Kräfte.


Beispiele für Dipol-Moleküle:


  • Wasserstoffbrücken-Bindungen

Diese zwischenmolekularen Kräfte sind in der organischen Chemie in erster Linie bei Molekülen mit O-H- und N-H-Bindungen von Bedeutung. Sie sind stärker als van der Waals- oder Dipolkräfte und bestimmen daher in hohem Maße das Verhalten solcher Moleküle. Wasserstoffbrücken-Bindungen sind Valenzkräfte definierter Richtung. Man definiert als Wasserstoffbrücken-Akzeptor (HBA) ein Molekül, welches ein “freies“ Elektronenpaar zur Bindung des Protons beisteuert. Den protonenspendenden Partner nennt man Wasserstoffbrücken-Donor (HBD).

 


 

Beispiele:

 

Wasser, Alkohole, Carbonsäuren und Carbonsäureamide fungieren sowohl als HBDs und HBAs und können daher H-Brücken-Assoziate mit sich selbst bilden (amphiprotonische Verbindungen).


Weitere zwischenmolekulare Kräfte


Für die meisten organischen Moleküle sind die oben genannten zwischenmolekularen Kräfte entscheidend. Beim Lösen von ionogenen Verbindungen, z. B. Salzen, sind noch elektrostatische Wechselwirkungen (Coulomb-Kräfte) zwischen positiv und negativ geladenen Ionen sowie zwischen Ionen und Dipolen wichtig. Ionen können auch Komplex-Bindungen mit n- und π-Donormolekülen eingehen. Charge-Transfer-Wechselwirkungen können auftreten zwischen n- oder π-Donoren und Akzeptor-Molekülen, die relativ niedrig liegende nichtbesetzte Molekülorbitale besitzen.

Beispiele:

 


Hydrophobe Wechselwirkungen In wässrigen Lösungen können zwischenmolekulare Kräfte zum Phänomen der hydrophoben Wechselwirkung führen, die besonders in biologischen Systemen von großer Bedeutung ist. Die Moleküle hydrophober Substanzen, z.B. von Kohlenwasserstoffen, können von Wassermolekülen nicht solvatisiert werden; sie stoßen sich ab. Wenn man eine hydrophobe Substanz in Wasser gibt, schafft man einen unvorteilhaften Zustand, was mit einer Abnahme von Entropie einhergeht. Dies beruht darauf, dass die Wassermoleküle sich ordnen müssen, damit ein Hohlraum für die Moleküle der unpolaren Substanz ausgebildet wird (Abb.1-3)

 
Schematische Darstellung der Hydrophobizität

Abb. 1-6. Schematische Darstellung der Hydrophobizität.

Hydrophobe Wechselwirkungen entstehen, wenn zwei oder mehrere unpolare Komponenten in Wasser gegeben werden. Die Moleküle der unpolaren Substanz(en) aggregieren, und durch das Aneinanderlagern wird die Oberfläche verkleinert. Dadurch sind weniger hydrophobe Bereiche der polaren Umgebung ausgesetzt. Hydrophobe Wechselwirkungen beruhen also nicht auf einer Anziehungskraft zwischen den unpolaren Molekülen. Vielmehr werden hydrophobe Moleküle durch die polare Umgebung aneinandergedrängt (Abb.1-4). Es ist also die Struktur des Wassers, welche die hydrophoben Wechselwirkungen bedingt.

 
Hydrophobe Wechselwirkungen, schematisch

Abb.1-7. Hydrophobe Wechselwirkungen, schematisch.

In der Biologie sind hydrophobe Wechselwirkungen u.a. verantwortlich für die Lipid-Doppelschicht-Struktur von Membranen und für die Bindung von Proteinen an diese Membranen. Sie gehören auch zu den Hauptkräften, welche die dreidimensionale Struktur von Proteinen stabilisieren.

Klassifizierung von LösungsmittelnBearbeiten

Die relativ starken Wasserstoffbrücken und das damit verbundene häufig besondere Verhalten der Lösungsmittel, die Wasserstoffbrücken-Donoren (HBDs) sind, machen es gerechtfertigt, dass wir

  • protonische Lösungsmittel von
  • aprotischen Lösungsmitteln unterscheiden.

Aprotonische Lösungsmittel Viele aprotonische Lösungsmittel bestehen aus Molekülen aliphatischer oder aromatischer monofunktioneller Verbindungen, deren zwischenmolekulare Kräfte auf van der Waals- oder/und Dipol-Anziehung zurückgeführt werden können. Wenn die Dipol-Kräfte dominieren, spricht man von polaren Lösungsmitteln. Als Maß ihrer Polarität könnte man das Dipolmoment µ (in der Gasphase!?) verwenden. In der Praxis hat es sich jedoch als günstiger erwiesen, empirische Polaritätsskalen durch vergleichende Messungen von Lösungsmitteleffekten aufzustellen (Lit.2). Verschiedene Polaritätsskalen basieren auf der durch Lösungsmittel verursachten Verschiebung der Absorptionsmaxima im UV/VIS-Spektrum von Farbstoffen (Solvatochromie), die sich experimentell leicht messen lässt. Nach den Skalen von Kosower (Z-Parameter) sowie Dimroth und Reichardt (ET-Parameter) (s. Lit.2) wurde in den 1980er Jahren die π*-Skala aufgestellt, die auf solvens-induzierten Verschiebungen der Maxima der Frequenzen der π → π*-Übergänge von sieben Indikatorfarbstoffen beruht. In der Tabelle 1-2 sind für einige aprotonische Lösungsmittel, Dipolmomente und Polaritätsparameter π* zusammengestellt (Lit.2,4,5). Die Lösungsmittel mit Dipolmomenten µ = ca. 3D, z.B. Dimethylformamid, Dimethylacetamid, Tetrahydrothiophen-S,S-dioxid (Tetramethylensulfon, “Sulfolan“), Dimethylsulfoxid, spielen in der organischen Chemie eine besondere Rolle und werden häufig als dipolare aprotonische Lösungsmittel hervorgehoben. Obwohl die Lösungsmittel Benzol und Toluol praktisch kein Dipolmoment aufweisen, ist ihr π*-Parameter relativ groß, größer als bei den gesättigten Kohlenwasserstoffen. Die größere Polarität der aromatischen Kohlenwasserstoffe ist ohne Zweifel auf die größere Polarisierbarkeit der π-Elektronen zurückzuführen. Dasselbe gilt für die mehrfach chlorierten Kohlenwasserstoffe Dichlormethan und Chloroform, die relativ kleine Dipolmomente besitzen. Perfluorhexan und -heptan haben die kleinsten (negativen!) π*-Parameter; diese Moleküle sind extrem schwer polarisierbar und damit sehr schlechte Solventien. Viele aprotische Lösungsmittel besitzen freie Elektronenpaare und sind daher Wasserstoffbrücken-Akzeptoren (HBAs). Die Akzeptorstärke eines Lösungsmittels, die sog. HBA-Basizität, korreliert nicht immer mit dem pKa-Wert in wässriger Lösung oder der Basizität in der Gasphase. Durch Messungen der Solvatochromie wurde daher eine Skala der HBA-Basizität (β-Skala) definiert, die in der Tabelle 1-2 ebenfalls aufgeführt ist.

Tabelle 1-2

Polaritätsparameter für einige aprotonische Lösungsmittel
Lösungsmittel Dipol-
moment
(Debye)
π* β
n- Hexan 0,0 -0,08 0,00
n-Heptan 0,0 -0,08 0,00
Cyclohexan 0,0 0,00 0,00
Benzol 0,0 0,59 0,10
Toluol 0,36 0,54 0,11
Tetrachlormethan 0,0 0,28 0,00
Dichlormethan 1,60 0,82 0,00
Chloroform 1,01 0,58 0,00
Perfluor-n-hexan -0,41 0,00
Perfluor-n-heptan -0,39 0,00
Diethylether 1,15 0,27 0,47
tert-Butylmethylether 1,32
Tetrahydrofuran 1,63 0,58 0,55
Dioxan 0,0 0,55 0,37
Pyridin 2,2 0,87 0,64
Aceton 2,88 0,71 0,48
2-Butanon 2,7 0,67 0,48
Ethylacetat 1,78 0,55 0,45
Acetonitril 3,92 0,75 0,31
N, N-Dimethylformamid 3,82 0,88 0,69
N-Methylpyrrolidon 4,1 0,92 0,77
Dimethylsulfoxid 3,96 1,00 0,76
Tetramethylensulfon 4,7 0,98
Hexamethylphosphorsäuretriamid 5,5 0,87 1,05


Protonische Lösungsmittel Protonische Lösungsmittel sind Wasserstoffbrücken-Donoren (HBDs). Die Fähigkeit eines Lösungsmittels, in einer Wasserstoff-Brücke ein Proton an einen gelösten Stoff, der als HBA fungiert, abzugeben, die HBD-Acidität, kann durch die α-Skala beschrieben werden. Die Tabelle 1-3 zeigt die α-Parameter sowie β- und π*-Werte für einige häufige protonische Lösungsmittel. Die Skala demonstriert nochmals, dass diese Lösungsmittel nicht nur Wassserstoffbrücken-Donoren, sondern auch -Akzeptoren sind (amphiprotonische Solventien). Bei den fluorierten Alkoholen 2,2,2-Trifluorethanol (TFE) und 1,1,1,3,3,3-Hexafluorisopropylalkohol (HFIP) tritt der HBA-Charakter völlig in den Hintergrund (β = Null!).

Tabelle 1-3

Polaritätsparameter für einige protonische Lösungsmittel
Lösungsmittel Dipol-
moment
(Debye)
π* β α
Wasser 1,85 1,09 0,18 1,17
Methanol 1,70 0,60 0,62 0,93
Ethanol 1,69 0,54 0,77 0,83
2-Propanol 0,48 0,95 0,76
tert-Butylalkohol 0,41 1,01 0,68
Ethylenglykol 2,28 0,92 0,52 0,90
2,2,2-Trifluorethanol
(TFE)
0,73 0,00 1,51
1,1,1,3,3,3-Hexa-
fluor-2-propanol
Hexafluorisopropanol
(HFIP)
0,65 0,00 1,96
Phenol 1,45
Essigsäure 1,74 0,64 1,12
Formamid 3,73 0,97 0,71


Lösungsmittel zur ExtraktionBearbeiten

Zur Extraktion von Naturstoffen werden (in der Reihenfolge absteigender Polarität) Methanol, Ethanol, Ethylacetat, Diethylether, chlorierte Kohlenwasserstoffe und Kohlenwasserstoffe selbst verwendet (Tabelle 1-4). Für anspruchsvollere analytische Arbeiten müssen diese Lösungsmittel rückstandsfrei, d.h. destilliert sein. Diethylether soll keine Peroxide enthalten. Die in der Tabelle aufgeführten Lösungsmittel haben meist relativ niedrige Siedepunkte. Das Lösungsmittel, das ja bloße Hilfsphase ist, lässt sich daher leicht durch Destillation, gegebenenfalls unter vermindertem Druck, entfernen. Aufgrund des sehr niedrigen Siedepunktes und seiner Unbrennbarkeit eignet sich Trichlorfluormethan besonders zur Extraktion leicht flüchtiger Verbindungen, wie z. B. Riechstoffen. Hierbei ist allerdings zu bedenken, dass Trichlorfluormethan, wie alle leicht flüchtigen Fluorchlorkohlenwasserstoffe (FCKWs), ökologisch bedenklich ist und nicht in die Atmosphäre gelangen darf.

Tabelle 1-4

Häufig verwendete Lösungsmittel zur Extraktion von Naturstoffen
Lösungsmittel Siedepunkt
°C
Gefahrenklasse
Methanol 65 B
Ethanol 78 B
Ethylacetat 77 A1
Diethylether 35 A1
tert-Butylmethylether 53 A1
Dichlormethan
Methylenchlorid
40
Trichlorfluormethan 24
Toluol 111 A1
Hexan 69 A1
Pentan 36 A1
Isopentan 28 A1
Petrolether 40 - ? A1


Es gibt jedoch einen Ersatzstoff: Kohlendioxid lässt sich unter Druck verflüssigen. In überkritischem Zustand verhält sich CO2 wie ein Lösungsmittel und hat als Extraktionsmittel ähnliche Eigenschaften wie Diethylether. Durch Entspannung des komprimierten Kohlendioxids lassen sich die extrahierten Substanzen sehr schonend gewinnen. Man benötigt jedoch zur Extraktion mit überkritischem CO2 Apparaturen, die in Praktika meistens nicht zur Verfügung stehen. Auch kontinuierliche Extraktionen in Hochdruck-Soxhlet-Extraktoren sind möglich. Die sehr schonende Methode wird in steigendem Maße zur Gewinnung von empfindlichen Pflanzeninhaltsstoffen (natürliche Aromen und Gewürzextrakte, ätherische Öle) verwendet. Industrielle Anwendungen sind die Hopfenextraktion und die Entcoffeinierung von Kaffeebohnen.

Welches Lösungsmittel löst eine bestimmte Substanz am besten? Häufig wird diese Frage auf empirischem Weg, d. h. durch Probieren, gelöst. Als einfache Faustregel kann das Ähnlichkeitsprinzip definiert werden, welches besagt, dass die Löslichkeit dann hoch sein wird, wenn in der zu lösenden Substanz und dem Lösungsmittel ähnliche zwischenmolekulare Kräfte wirksam werden können. Beispielsweise lösen sich Kohlenhydrate (Zucker) in Wasser, Alkoholen (H-Brücken), auch in Dimethylsulfoxid (starker H-Brücken-Akzeptor), nicht jedoch in Hexan, Toluol, etc. (nur van der Waals-Kräfte). Fette, deren Moleküle lange Alkylketten tragen, lösen sich bekanntlich nicht in Wasser, jedoch in unpolaren Solventien wie Toluol, Petrolether oder Dichlormethan.


Mischbarkeit organischer Lösungsmittel

Nicht alle organische Lösungsmittel lösen oder mischen sich in beliebigem Verhältnis ineinander bzw. miteinander. Für die Laborpraxis, die industrielle Chemie und die Biotechnologie sind diese Phänomene wichtig. In Abbildung 1-8 ist die Mischbarkeit einiger Lösungsmittel zusammengestellt.

Abb. 1-8. Mischbarkeit einiger organischer Lösungsmittel


Die Löslichkeit von Wasser in organischen Lösungsmitteln ist für die praktische Arbeit im Labor, insbesondere für die Verteilungsverfahren (Kapitel 4), und in der chemischen Technik von besonderer Bedeutung (vgl. auch die Einteilung in die Klassen A und B der Verordnung über brennbare Flüssigkeiten). Betrachten Sie dazu die Beispiele in Tabelle 1-5.

Tabelle 1-5

Gegenseitige Löslichkeit (Mischbarkeit) von organischen Lösungsmitteln und Wasser (in Gewichtsprozenten)
Lösungsmittel Löslichkeit von H2O
im org. Solvens
Löslichkeit in
Wasser
n-Pentan 0,0120 (25 °C) 0,0038 (25 °C)
n- Hexan 0,0111 (20 °C 0,001 (25 °C)
n-Heptan 0,0091 (25 °C) 0,0003 (25 °C)
Benzol 0,063 (25 °C) 0,1780 (25 °C)
Toluol 0,0334 (25 °C) 0,0515 (25 °C)
Dichlormethan 0,198 (25 °C) 1,30 (25 °C)
Chloroform 0,072 (23 °C) 0,815 (20 °C)
Tetrachlormethan 0,010 (24 °C) 0,077 (25 °C)
Diethylether 1,468 (25 °C) 6,04 (25 °C)
tert-Butylmethylether 1,5 (20 °C) 4,8 (20 °C)
Tetrahydrofuran
Dioxan
Ethylacetat 2,94 (25 °C) 8,1 (25 °C)
Pyridin
Aceton
2-Butanon 10,00 (20 °C) 24,00 (20 °C)
Acetonitril
N, N-Dimethylformamid
Methanol
Ethanol
1-Propanol
2-Propanol
Phenol 28,72 (25 °C) 8,66 (25 °C)
Formamid



Die Löslichkeit von Wasser in organischen Lösungsmitteln ist für die praktische Arbeit im Labor, insbesondere für die Verteilungsverfahren (Kapitel #), und in der chemischen Technik von besonderer Bedeutung (vgl. auch die Einteilung in die Klassen A und B der Verordnung über brennbare Flüssigkeiten). Betrachten Sie dazu die Beispiele in Tabelle 1-5.

Tabelle 1-5

Trocknen von LösungsmittelnBearbeiten

Wie erhält man trockene Lösungsmittel? Sie sind im Handel zu relativ hohem Preis erhältlich; Analytiker und Biowissenschaftler greifen oft auf diese Quellen zu. Billiger ist, wenn man wasserhaltige Lösungsmittel selbst reinigt. Hierfür gibt es verschiedene Methoden; viele davon können nur für spezielle Lösungsmittel benutzt werden. Im Zweifelsfall muss hierfür die Literatur zu Rate gezogen werden.[1][2][3]. Einfach, vielseitig verwendbar und ungefährlich ist das

Trocknen mit MolekülsiebenBearbeiten

Molekülsiebe, meist nach dem englischen (molecular sieves) im Deutschen "Molekularsiebe" genannt, sind kristalline, synthetische Zeolithe, deren Kristallgitter zahlreiche Hohlräume (Poren) enthält, welche miteinander durch Kanäle verbunden sind. Im Laborjargon wird oft die Bezeichnung "Molsieb" benutzt; aber ein Mol lässt sich schwerlich sieben, höchstens Moleküle!

 

Abb. 1-9. Struktur eines Zeoliths.

Der mittlere Durchmesser der Poren (300-1000 Pikometer), die Porengröße, lässt sich bei der Fabrikation reproduzierbar einstellen und wird meistens in Angstrom-Einheiten angegeben: 3, 4, 5, 10 A). Dementsprechend unterscheidet man Molekularsieb 3A bis Molekularsieb 10A.

Molekülsiebe werden als Pulver, Perlen oder Stäbchen gehandelt. Für die Lösungsmittel-Trocknung verwendet man meistens die Perlform.

In die Hohlräume können u.a. Wassermoleküle eingelagert und reversibel gebunden werden. 100 g Molekülsieb kann bei Raumtemperatur bis zu 20 g Wasser aufnehmen. Aber auch andere Moleküle, so die des Lösungsmittels, können adsorbiert werden. Damit die relativ kleinen Wassermoleküle bevorzugt eindiffundieren können, wählt man eine möglichst kleine Porengröße, 3 oder 4 Angstrom. Dies hängt auch vom Lösungsmittel ab.

Wasserhaltige Lösungsmittel lassen sich mit Molekülsieben nach zwei Verfahren trocknen:

Bei der satzweisen Trockung (Batch-Verfahren) lässt man das Lösungsmittel in einer Flasche über Molekülsieb ungefähr 24 Stunden stehen, wobei man gelegentlich umschüttelt. Im allgemeinen sind für 1 Liter Lösungsmittel mit einem Wassergehalt von etwa 1% ungefähr 100 g Molekülsieb erforderlich.

Die kontinuierliche Trocknung in einem Glasrohr (Schwerkraftsäule) ist effizienter. Man benötigt dazu ein Glasrohr mit einem angeschmolzenen kugelförmigen Oberteil und einem Hahn am Ende. Knapp oberhalb des Hahns ist eine Glasfritte eingeschmolzen. Hat man keine Säule mit Glasfritte, so stopft man etwas Glaswolle oder Watte in den Unterteil der Säule und füllt diese dann mit Molekülsieb-Perlen. Für eine 60 cm lange Säule von ca. 25 mm Durchmesser benötigt man ungefähr 250 g Molekülsieb. Man lässt nun langsam (!) das wasserhaltige Lösungsmittel auf die Füllung tropfen; dabei kann die Säule warm werden. Steht der Flüssigkeitsspiegel über der Füllung, regelt man mit dem Hahn die Fließgeschwindigkeit auf ca. 0,5 bis 0,8 ml/min ein. Das zuerst austropfende Lösungsmittel kann noch Staubanteile (wenn frisches Molekülsieb verwendet wird) und Spuren von Wasser enthalten. Man fängt daher den "Vorlauf" (ca. 250 ml) getrennt auf und lässt ihn nochmals durch die Säule sickern. Das folgende Lösungsmittelvolumen kann dann im allgemeinen ohne weitere Reinigung verwendet werden.

Wenn das getrocknete Lösungsmittel unmittelbar in das Auffanggefäß tropft, so kann ein Teil verdunsten. Dadurch wird die Umgebung abgekühlt (Verdampfungswärme!); aus der Luft kann wieder Feuchtigkeit aufgenommen werden. Dies kann verhindert werden, indem man zwischen dem Auslauf des Hahns und dem Auffanggefäß ein Verbindungsstück anbringt, welches die Luft ausschließt. Zum Druckausgleich trägt es ein mit Calciumchlorid gefülltes Trockenrohr.

Abb. 1-10. Bild evt. ergänzen

Die getrockneten Lösungsmittel werden auch über Molekülsieb aufbewahrt. Pro Liter benötigt man etwa 10 g Molekülsieb. Dieses soll staubfrei oder regeneriert worden sein (s.u.).

Die kontinuierliche Arbeitsweise ist der diskontinuierlichen vorzuziehen; sie ist intensiver und insgesamt zeitsparender. Auch bei Verwendung kleinerer Säulen lassen sich ausgezeichnete Trocknungseffekte erzielen. Bei schwieriger zu trocknenden Lösungsmitteln bzw. bei höheren Anfangswassergehalten empfiehlt sich eine satzweise Vortrocknung.

Regenerierung und Aktivierung der MolekülsiebeBearbeiten

Die Molekülsiebe können mehrfach regeneriert werden. Gebrauchtes Molekülsieb lässt man zunächst in einer Schale im Abzug (!) stehen, so dass anhängende Lösungsmittelreste verdampfen können. Anschließend wird das Molekülsieb in einer Weithalsflasche über entmineralisiertem Wasser stehen gelassen. Das Wasser wird einige Mal erneuert. Zur Aktivierung ,d.h. vollständigen Entfernung des Wassers aus dem beladenen Zeolith, wird in einer Schale das Molekülsieb in einem Trockenofen langsam erwärmt, so dass das locker anhaftende Wasser verdampft. Dann wird mehrere Stunden auf 350 bis 400 °C erhitzt; das in den Hohlräumen adsorbierte Wasser wird dabei ausgetrieben. Man lässt die Schale mit dem Molekülsieb im Exsikkator auf Raumtemperatur abkühlen. Eine gründliche Aktivierung bzw. Regenerierung der Molekülsiebe ist unerlässlich! Warnung: Erhitzen Sie niemals Molekülsiebe, die mit organischen Chemikalien in Berührung gekommen sind, im Trockenschrank! Explosionsgefahr!

Trocknen von ExtraktenBearbeiten

Bevor man einen organischen Extrakt weiter verarbeitet, muss man das Wasser entfernen, was man das “Trocknen“ der Extrakte nennt. Unterlässt man dies, so können Störungen im weiteren Gang der Aufarbeitung oder Ausbeuteminderungen eintreten. So kann sich beim anschließenden Abdestillieren der leichtflüchtigen Lösungsmittel das Wasser im Rückstand anreichern und die Kristallisation verzögern oder verhindern. Hydrolyseempfindliche Stoffe können beim Abdestillieren des wasserhaltigen Lösungsmittels reagieren. Im harmlosesten Fall wird der Rückstand von Wassertröpfchen durchsetzt sein, die anders schwierig zu entfernen sind. Trockenmittel für Extrakte sind wasserfrei getrocknete anorganische Salze, die Hydrate bilden: MetXm + nH2O → MetXm•nH2O.

Am häufigsten werden verwendet:

  • Calciumchlorid, CaCl2
  • Natriumsulfat, Na2SO4,
  • Magnesiumsulfat, MgSO4,
  • Calciumsulfat, CaSO4.

Für die praktische Durchführung des Trocknens sollte man folgendes beachten:

  • Verwenden Sie nur Trockenmittel einwandfreier Qualität, d.h. solche, die wirklich wasserfrei sind. In der Regel muss man Trockenmittel vor Gebrauch entwässern, was durch Ausheizen (“Glühen“) auf einem Blech oder in einer Eisenschale getan wird. Das ausgeheizte Trockenmittel sollte rasch in eine dicht verschließbare Vorratsflasche abgefüllt werden, wo man es abkühlen lässt. Selbstverständlich darf noch warmes Trockenmittel nicht in organische Lösungen gegeben werden.
  • Das Trocknen braucht genügend Zeit, denn es ist ein Diffusionsprozess zwischen flüssiger und fester Phase. Gelegentliches Umschütteln oder magnetisches Rühren erhöht die Trocknungsgeschwindigkeit. Wenn nicht gerührt wird, sollte mehrere Stunden, am besten über Nacht, getrocknet werden.
  • Nicht übertrieben viel Trockenmittel nehmen; durch Adsorption können Substanzverluste auftreten. Beim Abfiltrieren des Trockenmittels müsste man dieses mit einem Übermaß an getrocknetem (!) Lösungsmittel auswaschen. Am besten trocknet man den Extrakt kurze Zeit mit wenig Trockenmittel vor, dekantiert vom Trockenmittel ab und gibt dann frisches Trockenmittel zur Lösung, das man längere Zeit einwirken lässt.
  • Das Trockenmittel muss abfiltriert und mit trockenem Lösungsmittel ausgewaschen werden, bevor man das Lösungsmittel abdestilliert. Sonst kann beim Destillieren Hydratwasser zum Teil reversibel freigesetzt werden.
  • Calciumchlorid ist als Trockenmittel nicht für alle Stoffe geeignet. Es kann Komplexe bilden mit vielen Alkoholen, Aminen und einigen Estern und Ketonen. Das handelsübliche wasserfreie Calciumchlorid kann durch den industriellen Entwässerungsprozess etwas basische Calciumsalze enthalten, die Carbonsäuren und Phenole binden können. Im Zweifelsfalle also lieber Magnesiumsulfat oder Natriumsulfat verwenden.

EinzelnachweiseBearbeiten

  1. J. F. Coetzee, (Editor), Recommended methods for purification of solvents and tests for impurities, International Union of Pure and Applied Chemistry / Commission on Electroanalytical Chemistry, Pergamon Press, Oxford u.a.O, 1983.
  2. W. L. F. Armarego, C. Li-Lin Chai, Purification of laboratory chemicals, 5. Aufl., Butterworth-Heinemann, Amsterdam u.a. O., 2003, und frühere Auflagen
  3. H. G. O. Becker, R. Beckert, Organikum: organisch-chemisches Grundpraktikum, 22. Aufl., Wiley-VCH, Weinheim u.a.O., 2004, und frühere Auflagen.

LiteraturBearbeiten

  1. C. Reichardt, Lösungsmitteleffekte in der organischen Chemie, Verlag Chemie, Weinheim, 1969.
  2. C. Reichardt, Solvent Effects in Organic Chemistry, Verlag Chemie, Weinheim, New York, 1979.
  3. J. A. Riddick und W. B. Bunger, Organic Solvents in: Techniques of Chemistry, Vol. 2 (Hrsg. A.Weissberger), Wiley-Interscience 1970.
  4. J. L.M. Abboud, M. J. Kamlet und R. W. Taft, Progr. Phys. Org. Chem. (Hrsg. R. W. Taft), Vol. 13, 485 (1981).
  5. M. J. Kamlet, J. L. M. Abboud, M. H. Abraham und R. W. Taft, J. Org. Chem. 48, 2877-2887 (1983).
  6. Informationsschrift der E. Merck A. G.: Trocknen im Labor , Darmstadt.

VersucheBearbeiten